Skip to main content

Advertisement

Log in

Immune-Mediated CNS Diseases: a Review

  • Spinal Cord Injury Rehabilitation (CL Sadowsky, Section Editor)
  • Published:
Current Physical Medicine and Rehabilitation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review of central nervous system (CNS) immune-mediated disorders serves as an overview of multiple neuroinflammatory conditions. Organized by CNS site, it gives the reader up to date information on clinical presentation, diagnostic pitfalls, and treatment considerations for the acute phase of these disorders. Special attention is paid to some of the more rare CNS neuroinflammatory disorders, given the treatment and rehabilitation challenges that they present.

Recent Findings

In-depth discussion about conditions that can mimic idiopathic transverse myelitis is emphasized during this review. Also, opsoclonus-myoclonus syndrome is included as a discussion point in this review with the most recent literature cited. A general overview of the most current approaches and considerations for multiple sclerosis, neuromyelitis optica, and autoimmune encephalitis is discussed.

Summary

This review serves as a brief overview of neuroinflammatory conditions most relevant to neurologists and rehabilitation providers who see and manage these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently have been highlighted as: • Of importance

  1. Krishnan C, Kaplin AI, Pardo CA, Kerr DA, Keswani SC. Demyelinating disorders: update on transverse myelitis. Curr Neurol Neurosci Rep. 2006;6(3):236–43.

    Article  PubMed  Google Scholar 

  2. Krishnan C, Kaplin AI, Deshpande DM, Pardo CA, Kerr DA. Transverse myelitis: pathogenesis, diagnosis and treatment. Front Biosci. 2004;9:1483–99.

    Article  CAS  PubMed  Google Scholar 

  3. Harzheim M, Schlegel U, Urbach H, Klockgether T, Schmidt S. Discriminatory features of acute transverse myelitis: a retrospective analysis of 45 patients. J Neurol Sci. 2004;217(2):217–23.

    Article  PubMed  Google Scholar 

  4. Scott TF. Nosology of idiopathic transverse myelitis syndromes. Acta Neurol Scand. 2007;115(6):371–6.

    Article  PubMed  Google Scholar 

  5. Kuo SC, Cho WH, Shih HI, Tu YF. Idiopathic acute transverse myelitis in children: a retrospective series. Neuropediatrics. 2015;46(5):307–12.

    Article  PubMed  Google Scholar 

  6. • Huh Y, Park EJ, Jung JW, Oh S, Choi SC. Clinical insights for early detection of acute transverse myelitis in the emergency department. Clin Exp Emerg Med. 2015;2(1):44–50. This citation was flagged due to it being a larger case series (N = 46) and is a more recent study and highlights the potential for misdiagnosis with a myelitis event.

    Article  PubMed  PubMed Central  Google Scholar 

  7. • Greenberg BM, Frohman EM. Immune-mediated myelopathies. Continuum (Minneap Minn). 2015;21(1 Spinal Cord Disorders):121–31. This citation was flagged due to it being a newer comprehensive review of myelopathies and the importance of diagnostic category and aggressive treatment where appropriate.

    Google Scholar 

  8. • Goh C, Desmond PM, Phal PM. MRI in transverse myelitis. J Magn Reson Imaging. 2014;40(6):1267–79. This citation was flagged due to it highlighting the importance of location of lesions within the spinal cord with a three-dimensional approach in a diagnosis of myelitis and considerations of how location of a lesion within the spinal cord has clear diagnostic implications.

    Article  PubMed  Google Scholar 

  9. Hiraga A, Sakakibara R, Mori M, Yamanaka Y, Ito S, Hattori T. Urinary retention can be the sole initial manifestation of acute myelitis. J Neurol Sci. 2006;251(1–2):110–2.

    Article  CAS  PubMed  Google Scholar 

  10. Hammond ER, Kerr DA. Priapism in infantile transverse myelitis. Arch Neurol. 2009 Jul;66(7):894–7.

    Article  PubMed  Google Scholar 

  11. Transverse Myelitis Consortium Working Group. Proposed diagnostic criteria and nosology of acute transverse myelitis. Neurology. 2002;59(4):499–505. Review

    Article  Google Scholar 

  12. West TW, Hess C, Cree BA. Acute transverse myelitis: demyelinating, inflammatory, and infectious myelopathies. Semin Neurol. 2012 Apr;32(2):97–113.

    Article  PubMed  Google Scholar 

  13. Nardone R, Versace V, Brigo F, Tezzon F, Zuccoli G, Pikija S, et al. Herpes simplex virus type 2 myelitis: case report and review of the literature. Front Neurol. 2017;8:199.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Figueroa D, Isache C, Sands M, Guzman N. An unusual case of acute transverse myelitis caused by HSV-1 infection. IDCases. 2016;5:29–31.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sendi P, Hirzel C, Bloch A, Fischer U, Jeannet N, Berlinger L, et al. Bartonella-associated transverse myelitis. Emerg Infect Dis. 2017;23(4):712–3.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Baylor P, Garoufi A, Karpathios T, Lutz J, Mogelof J, Moseley D. Transverse myelitis in 2 patients with Bartonella henselae infection (cat scratch disease). Clin Infect Dis. 2007;45(4):e42–5.

    Article  CAS  PubMed  Google Scholar 

  17. • Absoud M, Greenberg BM, Lim M, Lotze T, Thomas T, Deiva K. Pediatric transverse myelitis. Neurology. 2016;87(9 Suppl 2):S46–52. This citation was flagged due to it being one of the more recent comprehensive reviews of myelitis in children.

    Article  PubMed  Google Scholar 

  18. • Dixit P, Garg RK, Malhotra HS, Jain A, Verma R, Sharma PK, et al. Cytokines and matrix metalloproteinases in the cerebrospinal fluid of patients with acute transverse myelitis: an outcome analysis. Inflamm Res. 2016;65(2):125–32. This citation was flagged due to it being one of the few studies that looked at CSF cytokines in patients with myelitis with a control group.

    Article  CAS  PubMed  Google Scholar 

  19. Kaplin AI, Deshpande DM, Scott E, Krishnan C, Carmen JS, Shats I, et al. IL-6 induces regionally selective spinal cord injury in patients with the neuroinflammatory disorder transverse myelitis. J Clin Invest. 2005;115(10):2731–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Uzawa A, Mori M, Arai K, Sato Y, Hayakawa S, Masuda S, et al. Cytokine and chemokine profiles in neuromyelitis optica: significance of interleukin-6. Mult Scler. 2010;16(12):1443–52.

    Article  CAS  PubMed  Google Scholar 

  21. • El Mekabaty A, Pardo CA, Gailloud P. The yield of initial conventional MRI in 115 cases of angiographically confirmed spinal vascular malformations. J Neurol. 2017;264(4):733–9 This citation was flagged due to it highlighting the low potential yield of MRI with respect to the diagnosis of vascular myelopathies.

    Article  PubMed  Google Scholar 

  22. • Chen J, Gailloud P. Safety of spinal angiography: complication rate analysis in 302 diagnostic angiograms. Neurology. 2011;77(13):1235–40. This citation was flagged to highlight the importance of spinal catheter angiography in diagnosis of vascular myelopathies and also notes a significant rate of misdiagnosis of transverse myelitis that were actually vascular in origin.

    Article  PubMed  Google Scholar 

  23. • Rengarajan B, Venkateswaran S, McMillan HJ. Acute asymmetrical spinal infarct secondary to fibrocartilaginous embolism. Childs Nerv Syst. 2015;31(3):487–91 This citation was flagged (N = 2) as one of the few newer studies noting that fibrocartilaginous embolus is a known mimicker of idiopathic transverse myelitis and it needs to be considered in any patient with an acute myelopathy.

    Article  PubMed  Google Scholar 

  24. • Koch MJ, Stapleton CJ, Agarwalla PK, Torok C, Shin JH, Coumans JV, et al. Open and endovascular treatment of spinal dural arteriovenous fistulas: a 10-year experience. J Neurosurg Spine. 2017;26(4):519–23. This citation was flagged due to it highlighting the importance of consideration of the fact that certain vascular myelopathies are potentially treatable as with dural AV fistulas in this case series (N = 47).

    Article  Google Scholar 

  25. • Yoder JA, Lloyd M, Zabrocki L, Auten J. Pediatric acute flaccid paralysis: enterovirus D68-associated anterior myelitis. J Emerg Med. 2017. This case report was flagged to highlight the perspective of Emergency room physicians with respect to a potential myelitis case and to note that cases of acute flaccid myelitis are still occurring outside of the initial outbreak in 2014.

  26. • Esposito S, Chidini G, Cinnante C, Napolitano L, Giannini A, Terranova L, et al. Acute flaccid myelitis associated with enterovirus-D68 infection in an otherwise healthy child. Virol J. 2017;14(1):4. This case report was flagged to note the suspected viral link with acute flaccid myelitis.

    Article  PubMed  PubMed Central  Google Scholar 

  27. • Messacar K, Schreiner TL, Van Haren K, Yang M, Glaser CA, Tyler KL, et al. Acute flaccid myelitis: a clinical review of US cases 2012–2015. Ann Neurol. 2016;80(3):326–38. This study was flagged as the most comprehensive review of the most recent U.S. data on acute flaccid myelitis.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kalita J, Misra UK, Mandal SK. Prognostic predictors of acute transverse myelitis. Acta Neurol Scand. 1998;98(1):60–3.

    Article  CAS  PubMed  Google Scholar 

  29. Misra UK, Kalita J. Can electromyography predict the prognosis of transverse myelitis? J Neurol. 1998;245(11):741–4.

    Article  CAS  PubMed  Google Scholar 

  30. Ravaglia S, Moglia A, Bogdanov EI. Presyrinx in children with Chiari malformations. Neurology. 2009;72(22):1966–7.

    Article  PubMed  Google Scholar 

  31. • Vadivelu S, Vadivelu S, Mealy M, Patel S, Kosnik-Infinger L, Becker D. Chiari I malformation in children with transverse myelitis. Dev Neurorehabil. 2017;24:1–6. This study was flagged due to it being one of the newest articles to demonstrate a concern for a link between Chiari malformations and the diagnosis of idiopathic transverse myelitis.

    Article  Google Scholar 

  32. Greenberg BM, Thomas KP, Krishnan C, Kaplin AI, Calabresi PA, Kerr DA. Idiopathic transverse myelitis: corticosteroids, plasma exchange, or cyclophosphamide. Neurology. 2007;68(19):1614–7.

    Article  CAS  PubMed  Google Scholar 

  33. Scott TF, Frohman EM, De Seze J, Gronseth GS, Weinshenker BG, Therapeutics and Technology Assessment Subcommittee of American Academy of Neurology. Evidence-based guideline: clinical evaluation and treatment of transverse myelitis: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2011;77(24):2128–34.

    Article  CAS  PubMed  Google Scholar 

  34. • Beh SC, Kildebeck E, Narayan R, Desena A, Schell D, Rowe ES, et al. High-dose methotrexate with leucovorin rescue: for monumentally severe CNS inflammatory syndromes. J Neurol Sci. 2017;372:187–95. This citation was flagged due to it highlighting the importance of high-dose IV methotrexate as a therapeutic option for severe CNS inflammatory diseases (N =10).

    Article  CAS  PubMed  Google Scholar 

  35. Chiganer EH, Hryb JP, Carnero Contentti E. Myelitis and lupus: clinical manifestations, diagnosis and treatment. Review. Reumatol Clin. 2016.

  36. Greenberg BM, Graves D, Remington G, Hardeman P, Mann M, Karandikar N, et al. Rituximab dosing and monitoring strategies in neuromyelitis optica patients: creating strategies for therapeutic success. Mult Scler. 2012;18(7):1022–6.

    Article  PubMed  Google Scholar 

  37. • Jones ML, Evans N, Tefertiller C, Backus D, Sweatman M, Tansey K, et al. Activity-based therapy for recovery of walking in individuals with chronic spinal cord injury: results from a randomized clinical trial. Arch Phys Med Rehabil. 2014;95(12):2239–46. This study was flagged as a newer clinical trial that supports the importance of activity-based rehabilitation for patients with spinal cord injuries, even outside of the acute phase.

    Article  PubMed  Google Scholar 

  38. Sadowsky CL, Hammond ER, Strohl AB, Commean PK, Eby SA, Damiano DL, et al. Lower extremity functional electrical stimulation cycling promotes physical and functional recovery in chronic spinal cord injury. J Spinal Cord Med. 2013;36(6):623–31.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dorsi MJ, Belzberg AJ. Nerve transfers for restoration of upper extremity motor function in a child with upper extremity motor deficits due to transverse myelitis: case report. Microsurgery. 2012;32(1):64–7.

    Article  PubMed  Google Scholar 

  40. Hattori Y, Doi K, Baliarsing AS. A part of the ulnar nerve as an alternative donor nerve for functioning free muscle transfer: a case report. J Hand Surg Am. 2002;27(1):150–3.

    Article  PubMed  Google Scholar 

  41. • Marignier R, Cobo Calvo A, Vukusic S. Neuromyelitis optica and neuromyelitis optica spectrum disorders. Curr Opin Neurol. 2017;30(3):208–15. This citation was flagged due to it being a newer comprehensive review of NMO-SD with the new criteria and recognition of the anti-MOG phenotype considerations.

    Article  PubMed  Google Scholar 

  42. Tenembaum S, Chitnis T, Nakashima I, Collongues N, McKeon A, Levy M, et al. Neuromyelitis optica spectrum disorders in children and adolescents. Neurology. 2016;87(9 Suppl 2):S59–66.

    Article  PubMed  Google Scholar 

  43. • Kitley J, Palace J. Therapeutic options in neuromyelitis optica spectrum disorders. Expert Rev Neurother. 2016;16(3):319–29. This citation was flagged due to it being a newer and comprehensive review of best available options for long-term NMO disease management.

    Article  CAS  PubMed  Google Scholar 

  44. English C, Aloi JJ. New FDA-approved disease-modifying therapies for multiple sclerosis. Clin Ther. 2015;37(4):691–715.

    Article  CAS  PubMed  Google Scholar 

  45. Menge T, Dubey D, Warnke C, Hartung HP, Stüve O. Ocrelizumab for the treatment of relapsing-remitting multiple sclerosis. Expert Rev Neurother. 2016;16(10):1131–9.

    Article  CAS  PubMed  Google Scholar 

  46. Newsome SD, Aliotta PJ, Bainbridge J, Bennett SE, Cutter G, Fenton K, et al. A framework of care in multiple sclerosis, part 2: symptomatic care and beyond. Int J MS Care. 2017;19(1):42–56.

    Article  PubMed  PubMed Central  Google Scholar 

  47. • Radwan W, Lucke-Wold B, Robadi IA, Gyure K, Roberts T, Bhatia S. Neurosarcoidosis: unusual presentations and considerations for diagnosis and management. Postgrad Med J. 2016;5. This case series (N= 3) was flagged due to a good demonstration of the heterogeneity of neurosarcoidosis presentation.

  48. • Ibitoye RT, Wilkins A, Scolding NJ. Neurosarcoidosis: a clinical approach to diagnosis and management. J Neurol. 2017;264(5):1023–8. This study was flagged due to it being a newer comprehensive review of the diagnostic approach and pitfalls and the options for management for neurosarcoidosis.

    Article  CAS  PubMed  Google Scholar 

  49. Fritz D, van de Beek D, Brouwer MC. Clinical features, treatment and outcome in neurosarcoidosis: systematic review and meta-analysis. BMC Neurol. 2016;16(1):220.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Costallat BL, Ferreira DM, Costallat LT, Appenzeller S. Myelopathy in systemic lupus erythematosus: clinical, laboratory, radiological and progression findings in a cohort of 1,193 patients. Rev Bras Reumatol Engl Ed. 2016;56(3):240–51.

    Article  PubMed  Google Scholar 

  51. Carvajal Alegria G, Guellec D, Mariette X, Gottenberg JE, Dernis E, Dubost JJ, et al. Epidemiology of neurological manifestations in Sjögren's syndrome: data from the French ASSESS cohort. RMD Open. 2016;2(1)

    Article  PubMed  PubMed Central  Google Scholar 

  52. Man BL, Mok CC, Fu YP. Neuro-ophthalmologic manifestations of systemic lupus erythematosus: a systematic review. Int J Rheum Dis. 2014;17(5):494–501.

    PubMed  Google Scholar 

  53. Bak E, Yang HK, Hwang JM. Optic neuropathy associated with primary Sjögren's syndrome: a case series. Optom Vis Sci. 2017;94(4):519–26.

    Article  PubMed  Google Scholar 

  54. Garrett G, Ambrose N, Davids Z, Bindman D. Course of neuropsychiatric symptoms during flares of systemic lupus erythematosus (SLE). Case Rep Psychiatry. 2017;2017:2890436. doi:10.1155/2017/2890436.

    PubMed  PubMed Central  Google Scholar 

  55. • Meena JP, Seth R, Chakrabarty B, Gulati S, Agrawala S, Naranje P. Neuroblastoma presenting as opsoclonus-myoclonus: a series of six cases and review of literature. J Pediatr Neurosci. 2016;11(4):373–7. This study was flagged as a newer study of Opsoclonus-myoclonus patients (N=6) and demonstrated a newer finding of a low relapse rate with patients treated appropriately in the acute phase

    Article  PubMed  PubMed Central  Google Scholar 

  56. • Blaes F, Dharmalingam B. Childhood opsoclonus-myoclonus syndrome: diagnosis and treatment. Expert Rev Neurother. 2016;16(6):641–8. This study was flagged as a more recent thorough review of diagnostic approach and management options for opsoclonus-myoclonus.

    Article  CAS  PubMed  Google Scholar 

  57. • Armangué T, Sabater L, Torres-Vega E, Martínez-Hernández E, Ariño H, Petit-Pedrol M, et al. Clinical and immunological features of opsoclonus-myoclonus syndrome in the era of neuronal cell surface antibodies. JAMA Neurol. 2016;73(4):417–24. This study was cited as one of the largest studies (N =114) of adults with opsoclonus-myoclonus syndrome.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hasegawa S, Matsushige T, Kajimoto M, Inoue H, Momonaka H, Japanese Society for Pediatric Immune-Mediated Brain Diseases, et al. A nationwide survey of opsoclonus-myoclonus syndrome in Japanese children. Brain Dev. 2015;37(7):656–60.

    Article  PubMed  Google Scholar 

  59. • Anand G, Bridge H, Rackstraw P, Chekroud AM, Yong J, Stagg CJ, et al. Cerebellar and cortical abnormalities in paediatric opsoclonus-myoclonus syndrome. Dev Med Child Neurol. 2015;57(3):265–72. This study was cited as one of the few studies that demonstrates a clear imaging abnormality in patients with a history of opsoclonus-myoclonus syndrome as compared to a control group (N = 9).

    Article  PubMed  Google Scholar 

  60. Pranzatelli MR, Travelstead AL, Tate ED, Allison TJ, Verhulst SJ. CSF B-cell expansion in opsoclonus-myoclonus syndrome: a biomarker of disease activity. Mov Disord. 2004;19(7):770–7.

    Article  PubMed  Google Scholar 

  61. Nosadini M, Mohammad SS, Suppiej A, Sartori S, Dale RC, IVIG in neurology study group. Intravenous immunoglobulin in paediatric neurology: safety, adherence to guidelines, and long-term outcome. Dev Med Child Neurol. 2016;58(11):1180–92.

    Article  PubMed  Google Scholar 

  62. • Mitchell WG, Wooten AA, O'Neil SH, Rodriguez JG, Cruz RE, Wittern R. Effect of increased immunosuppression on developmental outcome of opsoclonus myoclonus syndrome (OMS). J Child Neurol. 2015;30(8):976–82. This citation was flagged to demonstrate that more aggressive treatment for opsoclonus-myoclonus syndrome earlier in the disease course may be associated with better outcomes.

    Article  PubMed  Google Scholar 

  63. Cooper CJ, Said S. West nile virus encephalitis induced opsoclonus-myoclonus syndrome. Neurol Int. 2014;6(2):5359.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Karaca S, Kozanoğlu İ, Karakurum Göksel B, Karataş M, Tan M, Yerdelen VD, et al. Therapeutic plasma exchange in neurologic diseases: an experience with 91 patients in seven years. Noro Psikiyatr Ars. 2014;51(1):63–8.

    Article  PubMed  PubMed Central  Google Scholar 

  65. • Toyoshima D, Morisada N, Takami Y, Kidokoro H, Nishiyama M, Nakagawa T, et al. Rituximab treatment for relapsed opsoclonus-myoclonus syndrome. Brain Dev. 2016;38(3):346–9. This study was cited highlighting the importance of consideration of rituximab for opsoclonus-myoclonus syndrome.

    Article  PubMed  Google Scholar 

  66. Gadian J, Kirk E, Holliday K, Lim M, Absoud M. Systematic review of immunoglobulin use in paediatric neurological and neurodevelopmental disorders. Dev Med Child Neurol. 2017;59(2):136–44.

    Article  PubMed  Google Scholar 

  67. Mesraoua B, Abbas M, D'Souza A, Miyares FR, Hashem M, Osman Y, et al. Adult opsoclonus-myoclonus syndrome following mycoplasma pneumoniae infection with dramatic response to plasmapheresis. Acta Neurol Belg. 2011;111(2):136–8.

    PubMed  Google Scholar 

  68. Pranzatelli MR, Tate ED, Dukart WS, Flint MJ, Hoffman MT, Oksa AE. Sleep disturbance and rage attacks in opsoclonus-myoclonus syndrome: response to trazodone. J Pediatr. 2005;147(3):372–8.

    Article  CAS  PubMed  Google Scholar 

  69. De Grandis E, Parodi S, Conte M, Angelini P, Battaglia F, Gandolfo C, et al. Long-term follow-up of neuroblastoma-associated opsoclonus-myoclonus-ataxia syndrome. Neuropediatrics. 2009;40(3):103–11.

    Article  PubMed  CAS  Google Scholar 

  70. Catsman-Berrevoets CE, Aarsen FK, van Hemsbergen ML, van Noesel MM, Hakvoort-Cammel FG, van den Heuvel-Eibrink MM. Improvement of neurological status and quality of life in children with opsoclonus myoclonus syndrome at long-term follow-up. Pediatr Blood Cancer. 2009;53(6):1048–53.

    Article  PubMed  Google Scholar 

  71. • Pranzatelli MR, Tate ED. Trends and tenets in relapsing and progressive opsoclonus-myoclonus syndrome. Brain Dev. 2016;38(5):439–48. This citation was flagged as a comprehensive review of the theory of opsoclonusmyoclonus syndrome as a relapsing and progressive neuroimmunologic disease.

    Article  PubMed  Google Scholar 

  72. Pranzatelli MR, Tate ED, Travelstead AL, Baumgardner CA, Gowda NV, Halthore SN, et al. Insights on chronic-relapsing opsoclonus-myoclonus from a pilot study of mycophenolate mofetil. J Child Neurol. 2009;24(3):316–22.

    Article  PubMed  Google Scholar 

  73. Pike M. Opsoclonus-myoclonus syndrome. Handb Clin Neurol. 2013;112:1209–11.

    Article  PubMed  Google Scholar 

  74. Tate ED, Pranzatelli MR, Verhulst SJ, Markwell SJ, Franz DN, Graf WD, et al. Active comparator-controlled, rater-blinded study of corticotropin-based immunotherapies for opsoclonus-myoclonus syndrome. J Child Neurol. 2012;27(7):875–84.

    Article  PubMed  Google Scholar 

  75. Desai J, Mitchell WG. Acute cerebellar ataxia, acute cerebellitis, and opsoclonus-myoclonus syndrome. J Child Neurol. 2012;27(11):1482–8.

    Article  PubMed  Google Scholar 

  76. Bultmann U, Pierscianek D, Gizewski ER, Schoch B, Fritsche N, Timmann D, et al. Functional recovery and rehabilitation of postural impairment and gait ataxia in patients with acute cerebellar stroke. Gait Posture. 2014;39(1):563–9.

    Article  PubMed  Google Scholar 

  77. • Garg P, Rajasekaran M, Pandey S, Gurusamy G, Balalakshmoji D, Rathinasamy R. Magnetic resonance imaging brain findings in a case of aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder, presenting with intractable vomiting and hiccups. J Neurosci Rural Pract. 2017;8(1):135–8. This citation was flagged as an excellent example of the imaging findings that correlate with the vomiting and hiccupping syndrome in NMO patients.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Popescu BF, Lennon VA, Parisi JE, Howe CL, Weigand SD, Cabrera-Gómez JA, et al. Neuromyelitis optica unique area postrema lesions: nausea, vomiting, and pathogenic implications. Neurology. 2011;76(14):1229–37.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cheng C, Jiang Y, Lu X, Gu F, Kang Z, Dai Y, et al. The role of anti-aquaporin 4 antibody in the conversion of acute brainstem syndrome to neuromyelitis optica. BMC Neurol. 2016;16(1):203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Li Y, Jiang B, Chen B, Zhao M, Zhou C, Wang S, et al. Neuromyelitis optica spectrum disorders with multiple brainstem manifestations: a case report. Neurol Sci. 2016;37(2):309–13.

    Article  PubMed  Google Scholar 

  81. • Kremer L, Mealy M, Jacob A, Nakashima I, Cabre P, Bigi S, et al. Brainstem manifestations in neuromyelitis optica: a multicenter study of 258 patients. Mult Scler. 2014;20(7):843–7. This citation was flagged as one of the larger studies (N = 258) of brainstem manifestations in NMO patients.

    Article  CAS  PubMed  Google Scholar 

  82. Nerrant E, Tilikete C. Ocular motor manifestations of multiple sclerosis. J Neuroophthalmol. 2017;13

  83. Saleh C, Patsi O, Mataigne F, Beyenburg S. Peripheral (seventh) nerve palsy and multiple sclerosis: a diagnostic dilemma—a case report. Case Rep Neurol. 2016;8(1):27–33.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Evlice A, Demir T, Kaleağası C, Özcan F, Demirkıran M. Rare onset symptoms in multiple sclerosis. Acta Clin Belg. 2016;71(3):154–7.

    Article  PubMed  Google Scholar 

  85. Preziosa P, Rocca MA, Mesaros S, Pagani E, Drulovic J, Stosic-Opincal T, et al. Relationship between damage to the cerebellar peduncles and clinical disability in multiple sclerosis. Radiology. 2014;271(3):822–30.

    Article  PubMed  Google Scholar 

  86. Shimizu K, Yuki K, Sadatomo T, Kurisu K. Isolated neurosarcoidosis presenting with multiple cranial nerve palsies. Surg Neurol Int. 2016;7:44.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Pohl D, Alper G, Van Haren K, Kornberg AJ, Lucchinetti CF, Tenembaum S, et al. Acute disseminated encephalomyelitis: updates on an inflammatory CNS syndrome. Neurology. 2016;87(9 Suppl 2):S38–45.

    Article  PubMed  Google Scholar 

  88. • Brenton JN, Banwell BL. Therapeutic approach to the management of pediatric demyelinating disease: multiple sclerosis and acute disseminated encephalomyelitis. Neurotherapeutics. 2016;13(1):84–95. This citation was flagged as one of the most comprehensive and thorough reviews of the treatment and management for ADEM.

    Article  CAS  PubMed  Google Scholar 

  89. Gable M, Glaser C. Anti-N-methyl-D-aspartate receptor encephalitis appearing as a new-onset psychosis: disease course in children and adolescents within the California Encephalitis Project. Pediatr Neurol. 2017; doi:10.1016/j.pediatrneurol.2017.01.023.

    Article  PubMed  Google Scholar 

  90. • Hallowell S, Tebedge E, Oates M, Hand E. Rituximab for treatment of refractory anti-NMDA receptor encephalitis in a pediatric patient. J Pediatr Pharmacol Ther. 2017;22(2):118–23. This citation was flagged as a newer example of the importance of rituximab for treatment for anti-NMDA receptor antibody encephalitis.

    PubMed  PubMed Central  Google Scholar 

  91. • Dale RC, Gorman MP, Lim M. Autoimmune encephalitis in children: clinical phenomenology, therapeutics, and emerging challenges. Curr Opin Neurol. 2017;30(3):334–44. This citation was flagged as one of the newer and more comprehensive reviews of autoimmune encephalitis in children and considerations for management.

    Article  CAS  PubMed  Google Scholar 

  92. • Nagappa M, Parayil SB, Mahadevan A, Sinha S, Mathuranath PS, Taly AB. Management of Anti- N-methyl-D-aspartate (NMDA) receptor encephalitis in children. J Child Neurol. 2017;32(5):513–4. This citation was flagged as one of the most recent reviews of management for anti- NMDA receptor antibody encephalitis.

    Article  PubMed  Google Scholar 

  93. • Zhang L, Wu MQ, Hao ZL, Chiang SM, Shuang K, Lin MT, et al. Clinical characteristics, treatments, and outcomes of patients with anti-N-methyl-D-aspartate receptor encephalitis: a systematic review of reported cases. Epilepsy Behav. 2017;68:57–65. This citation was cited as one of the larger series of anti-NMDA receptor antibody encephalitis (N =412) and noted equivalence in efficacy between steroids and IVIg therapy.

    Article  PubMed  Google Scholar 

  94. • McKeon GL, Scott JG, Spooner DM, Ryan AE, Blum S, Gillis D, et al. Cognitive and social functioning deficits after anti-N-methyl-D-aspartate receptor encephalitis: an exploratory case series. J Int Neuropsychol Soc. 2016;22(8):828–38. This citation was flagged exploring the impacts on cognitive function with patients with known anti-NMDA receptor antibody encephalitis.

    Article  PubMed  Google Scholar 

  95. • DeSena AD, Noland DK, Matevosyan K, King K, Phillips L, Qureshi SS, et al. Intravenous methylprednisolone versus therapeutic plasma exchange for treatment of anti-N-methyl-D-aspartate receptor antibody encephalitis: a retrospective review. J Clin Apher. 2015;30(4):212–6. This citation was flagged highlighting a study that demonstrated that plasma exchange may be the most superior first-line therapy for anti-NMDA receptor antibody encephalitis.

    Article  PubMed  Google Scholar 

  96. Beis JM, Renard M. Adult anti-NMDA receptor encephalitis: which physical and rehabilitation medicine program? Case reports and literature review. Ann Phys Rehabil Med. 2016;59S:e153–4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen D. DeSena.

Ethics declarations

Conflict of Interest

Allen D. DeSena declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Spinal Cord Injury Rehabilitation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeSena, A.D. Immune-Mediated CNS Diseases: a Review. Curr Phys Med Rehabil Rep 5, 134–142 (2017). https://doi.org/10.1007/s40141-017-0160-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40141-017-0160-y

Keywords

Navigation