Skip to main content

Advertisement

Log in

The Role of IL-17 Signaling in Regulation of the Liver–Brain Axis and Intestinal Permeability in Alcoholic Liver Disease

  • Cytokines that affect liver fibrosis and activation of hepatic myofibroblasts ( T.Kisseleva, Section Editor)
  • Published:
Current Pathobiology Reports

Abstract

Alcoholic liver disease (ALD) progresses from a normal liver, to steatosis, steatohepatitis, fibrosis, and hepatocellular carcinoma (HCC). Despite intensive studies, the pathogenesis of ALD is poorly understood, in part due to a lack of suitable animal models which mimic the stages of ALD progression. Furthermore, the role of IL-17 in ALD has not been evaluated. We and others have recently demonstrated that IL-17 signaling plays a critical role in the development of liver fibrosis and cancer. Here we summarize the most recent evidence supporting the role of IL-17 in ALD. As a result of a collaborative effort of Drs. Karin, Gao, Tsukamoto, and Kisseleva, we developed several improved models of ALD in mice: (1) chronic-plus-binge model that mimics early stages of steatohepatitis, (2) intragastric ethanol feeding model that mimics alcoholic steatohepatitis and fibrosis, and (3) diethylnitrosamine (DEN) + alcohol model that mimics alcoholic liver cancer. These models might provide new insights into the mechanism of IL-17 signaling in ALD and help identify novel therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Col:

Collagen α1(I)

α-SMA:

α-Smooth muscle actin

qHSCs:

Quiescent hepatic stellate cells

aHSCs:

Activated hepatic stellate cells

iHSCs:

Inactivated hepatic stellate cells

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Gao B, Bataller R (2011) Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 141:1572–1585. This review described the pathological process of alcoholic liver diseases from steatosis, alcoholic hepatitis, alcoholic fibrosis to the end stage hepatocellular carcinoma

  2. •• Xu J et al (2014) New approaches for studying alcoholic liver disease. Curr Pathobiol Rep 2:171–183. This review summarized the progression of alcoholic liver diseases and proposed several potential targets for ALD treatment

  3. •• Bertola A et al (2013) Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nat Protoc 8:627–637. This paper described the method of chronic alcohol consumption and single high dose of alcohol binge, causing more severe steatosis and neutrophil infiltration than chronic alcohol feeding alone

  4. O’Shea RS, Dasarathy S, McCullough AJ (2010) Practice Guideline Committee of the American Association for the Study of Liver, D. & Practice Parameters Committee of the American College of, G. Alcoholic liver disease. Hepatology 51:307–328

    Article  PubMed  Google Scholar 

  5. Lemmers A et al (2009) The interleukin-17 pathway is involved in human alcoholic liver disease. Hepatology 49:646–657

    Article  CAS  PubMed  Google Scholar 

  6. Kisseleva T, Brenner DA (2008) Mechanisms of fibrogenesis. Exp Biol Med 233:109–122

    Article  CAS  Google Scholar 

  7. Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Invest 115:209–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kisseleva T, Brenner DA (2006) Hepatic stellate cells and the reversal of fibrosis. J Gastroenterol Hepatol 21(Suppl 3):S84–87

    Article  CAS  PubMed  Google Scholar 

  9. Kalluri R, Neilson EG (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112:1776–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gomperts BN, Strieter RM (2007) Fibrocytes in lung disease. J Leukoc Biol 82:449–456

    Article  CAS  PubMed  Google Scholar 

  11. Fallowfield JA et al (2007) Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J Immunol 178:5288–5295

    Article  CAS  PubMed  Google Scholar 

  12. Ueno A et al (2012) Mouse intragastric infusion (iG) model. Nat Protoc 7:771–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. •• Kisseleva T et al (2012) Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc Natl Acad Sci USA 109:9448–9453. This paper reported a novel alcohol feeding protocol by implanting gastrostomy catheter into gastrointestinal tract to create the alcoholic liver disease model. This ALD model is characterized by elevated alanine aminotransferase levels and severe hepatic steatosis

  14. Mello T, Ceni E, Surrenti C, Galli A (2008) Alcohol induced hepatic fibrosis: role of acetaldehyde. Mol Aspects Med 29:17–21

    Article  CAS  PubMed  Google Scholar 

  15. • Brandon-Warner E, Walling TL, Schrum LW, McKillop IH (2010) Chronic ethanol feeding accelerates hepatocellular carcinoma progression in a sex-dependent manner in a mouse model of hepatocarcinogenesis. Alcohol Clin Exp Res 36:641–653. This paper described the mouse model with alcohol induced hepatocellular carcinoma development

  16. Alison MR (2005) Liver stem cells: implications for hepatocarcinogenesis. Stem Cell Rev 1:253–260

    Article  CAS  PubMed  Google Scholar 

  17. Sell S (1990) Is there a liver stem cell? Cancer Res 50:3811–3815

    CAS  PubMed  Google Scholar 

  18. Wu XZ, Chen D (2006) Origin of hepatocellular carcinoma: role of stem cells. J Gastroenterol Hepatol 21:1093–1098

    Article  CAS  PubMed  Google Scholar 

  19. Shen Y, Cao D (2012) Hepatocellular carcinoma stem cells: origins and roles in hepatocarcinogenesis and disease progression. Front Biosci 4:1157–1169

    Article  Google Scholar 

  20. Duncan AW, Dorrell C, Grompe M (2009) Stem cells and liver regeneration. Gastroenterology 137:466–481

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sell S (2001) Heterogeneity and plasticity of hepatocyte lineage cells. Hepatology 33:738–750

    Article  CAS  PubMed  Google Scholar 

  22. •• Naugler WE et al (2007) Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317:121–124. The paper discovered the differential expression of IL-6 between male and female mice, when they were under diethylnitrosamine (DEN) challenging. It explained the gender disparity in liver cancer

  23. Gu FM et al (2011) IL-17 induces AKT-dependent IL-6/JAK2/STAT3 activation and tumor progression in hepatocellular carcinoma. Mol Cancer 10:150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li J et al (2011) Interleukin 17A promotes hepatocellular carcinoma metastasis via NF-kB induced matrix metalloproteinases 2 and 9 expression. PLoS ONE 6:e21816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. •• Jiang R et al (2011) Interleukin-22 promotes human hepatocellular carcinoma by activation of STAT3. Hepatology 54:900–909. This paper highlight the alteration of STAT3 signaling during liver disease progression, and propose that small molecules activate STAT3 can be potential therapeutic targets for liver diseases

  26. • Wang H, Lafdil F, Kong X, Gao B (2011) Signal transducer and activator of transcription 3 in liver diseases: a novel therapeutic target. Int J Biol Sci 7:536–550. This review summarized the role of STAT3 phosphatation during alcoholic liver disease.

  27. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798–809

    Article  CAS  PubMed  Google Scholar 

  28. Sicklick JK et al (2006) Dysregulation of the Hedgehog pathway in human hepatocarcinogenesis. Carcinogenesis 27:748–757

    Article  CAS  PubMed  Google Scholar 

  29. •• Karin M (2009) NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol 1:a000141. NF-kappaB is activated by pro-inflammatory cytokines IL-17 and TNFs from activated macrophages and lymphocytes. Downstream genes of NF-kappaB promote cancer cell proliferation and survival

  30. • Sakurai T et al (2008) Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell 14:156–165. Carcinogenesis effect of Ikk-beta is mediated by IL-1α releasing and ROS accumulation

  31. White BD, Chien AJ, Dawson DW (2012) Dysregulation of Wnt/beta-catenin signaling in gastrointestinal cancers. Gastroenterology 142:219–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sell S, Osborn K, Leffert HL (1981) Autoradiography of “oval cells” appearing rapidly in the livers of rats fed N-2-fluorenylacetamide in a choline devoid diet. Carcinogenesis 2:7–14

    Article  CAS  PubMed  Google Scholar 

  33. Carpentier R et al (2011) Embryonic ductal plate cells give rise to cholangiocytes, periportal hepatocytes, and adult liver progenitor cells. Gastroenterology 141:1432–1438 e1431-1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dorrell C et al (2011) Prospective isolation of a bipotential clonogenic liver progenitor cell in adult mice. Genes Dev 25:1193–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kopp JL et al (2011) Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development 138:653–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shin S et al (2011) Foxl1-Cre-marked adult hepatic progenitors have clonogenic and bilineage differentiation potential. Genes Dev 25:1185–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dorrell C et al (2008) Surface markers for the murine oval cell response. Hepatology 48:1282–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lemaigre FP (2009) Mechanisms of liver development: concepts for understanding liver disorders and design of novel therapies. Gastroenterology 137:62–79

    Article  CAS  PubMed  Google Scholar 

  39. Feng D et al (2012) Interleukin-22 promotes proliferation of liver stem/progenitor cells in mice and patients with chronic hepatitis B virus infection. Gastroenterology 143:188–198 e187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao X et al (2012) Study on mechanism of ginsenoside Rg1-induced human neural stem cells differentiation by genechip. China J Chin Materia Medica 37:515–519

    CAS  Google Scholar 

  41. de la Monte SM, Longato L, Tong M, DeNucci S, Wands JR (2009) The liver-brain axis of alcohol-mediated neurodegeneration: role of toxic lipids. Int J Environ Res Public health 6:2055–2075

    Article  PubMed  PubMed Central  Google Scholar 

  42. Crews FT, Vetreno RP (2014) Neuroimmune basis of alcoholic brain damage. Int Rev Neurobiol 118:315–357

    Article  PubMed  Google Scholar 

  43. Sutherland GT, Sheedy D, Kril JJ (2014) Neuropathology of alcoholism. Handbook of clinical neurology 125:603–615

    Article  PubMed  Google Scholar 

  44. Erdozain AM et al (2014) Alcohol-related brain damage in humans. PLoS ONE 9:e93586

    Article  PubMed  PubMed Central  Google Scholar 

  45. Szabo G, Lippai D (2014) Converging actions of alcohol on liver and brain immune signaling. Int Rev Neurobiol 118:359–380

    Article  PubMed  Google Scholar 

  46. Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM (2006) Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 24:677–688

    Article  CAS  PubMed  Google Scholar 

  47. Steinman L (2007) A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med 13:139–145

    Article  CAS  PubMed  Google Scholar 

  48. Ivanov II et al (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17 + T helper cells. Cell 126:1121–1133

    Article  CAS  PubMed  Google Scholar 

  49. Yang XO et al (2008) T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 28:29–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bettelli E et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238

    Article  CAS  PubMed  Google Scholar 

  51. Mangan PR et al (2006) Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441:231–234

    Article  CAS  PubMed  Google Scholar 

  52. Kolls JK, Linden A (2004) Interleukin-17 family members and inflammation. Immunity 21:467–476

    Article  CAS  PubMed  Google Scholar 

  53. Iwakura Y, Ishigame H, Saijo S, Nakae S (2011) Functional specialization of interleukin-17 family members. Immunity 34:149–162

    Article  CAS  PubMed  Google Scholar 

  54. Yao Z et al (1995) Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3:811–821

    Article  CAS  PubMed  Google Scholar 

  55. Andoh A et al (2002) IL-17 selectively down-regulates TNF-alpha-induced RANTES gene expression in human colonic subepithelial myofibroblasts. J Immunol 169:1683–1687

    Article  CAS  PubMed  Google Scholar 

  56. Subramaniam SV, Cooper RS, Adunyah SE (1999) Evidence for the involvement of JAK/STAT pathway in the signaling mechanism of interleukin-17. Biochem Biophys Res Commun 262:14–19

    Article  CAS  PubMed  Google Scholar 

  57. Miossec P, Kolls JK (2012) Targeting IL-17 and TH17 cells in chronic inflammation. Nat Rev Drug Discovery 11:763–776

    Article  CAS  PubMed  Google Scholar 

  58. Ye P et al (2001) Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 194:519–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shen F, Gaffen SL (2008) Structure-function relationships in the IL-17 receptor: implications for signal transduction and therapy. Cytokine 41:92–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gaffen SL (2009) Structure and signalling in the IL-17 receptor family. Nat Rev Immunol 9:556–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Faust SM et al (2009) Role of T cell TGFbeta signaling and IL-17 in allograft acceptance and fibrosis associated with chronic rejection. J Immunol 183:7297–7306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wilson MS et al (2010) Bleomycin and IL-1beta-mediated pulmonary fibrosis is IL-17A dependent. J Exp Med 207:535–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Longhi MS et al (2004) Impairment of CD4(+)CD25(+) regulatory T-cells in autoimmune liver disease. J Hepatol 41:31–37

    Article  CAS  PubMed  Google Scholar 

  64. Ge J et al (2010) Implication of Th17 and Th1 cells in patients with chronic active hepatitis B. J Clin Immunol 30:60–67

    Article  CAS  PubMed  Google Scholar 

  65. Affo S et al (2012) Transcriptome analysis identifies TNF superfamily receptors as potential therapeutic targets in alcoholic hepatitis. Gut 62:452–460

    Article  PubMed  PubMed Central  Google Scholar 

  66. Grivennikov SI et al (2012) Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491:254–258

    CAS  PubMed  PubMed Central  Google Scholar 

  67. •• Meng F et al (2012) Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology 143:765–776; e761–e763. In response to liver injury (hepatotoxicity and billiary obstruction), IL-17A expression is increased and IL-17A directly activates hepatic stellate cells by STAT3 signaling

  68. Parham C et al (2002) A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol 168:5699–5708

    Article  CAS  PubMed  Google Scholar 

  69. Cua DJ et al (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744–748

    Article  CAS  PubMed  Google Scholar 

  70. Langrish CL et al (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang JY et al (2010) Interleukin-17-producing CD4(+) T cells increase with severity of liver damage in patients with chronic hepatitis B. Hepatology 51:81–91

    Article  CAS  PubMed  Google Scholar 

  72. •• Gao B (2012) Hepatoprotective and anti-inflammatory cytokines in alcoholic liver disease. J Gastroenterol Hepatol 27(Suppl 2):89–93. IL-22 treatment is a potential therapeutic option for treating severe forms of alcoholic liver disease because of its antioxidant, antiapoptotic, antisteatotic, proliferative, and antimicrobial effects, as well as the potential added benefit of few side effects

  73. Langowski JL et al (2006) IL-23 promotes tumour incidence and growth. Nature 442:461–465

    Article  CAS  PubMed  Google Scholar 

  74. Li J et al (2012) Interleukin 23 promotes hepatocellular carcinoma metastasis via NF-kappa B induced matrix metalloproteinase 9 expression. PLoS ONE 7:e46264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schaalan MF, Mohamed WA, Amin HH (2012) Vitamin D deficiency: correlation to interleukin-17, interleukin-23 and PIIINP in hepatitis C virus genotype 4. World J Gastroenterol 18:3738–3744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Xu Y et al (2012) IL-23R polymorphisms, HBV infection, and risk of hepatocellular carcinoma in a high-risk Chinese population. J Gastroenterol 48:125–131

    Article  PubMed  Google Scholar 

  77. Hall AO, Silver JS, Hunter CA (2012) The immunobiology of IL-27. Adv Immunol 115:1–44

    Article  PubMed  Google Scholar 

  78. Diveu C et al (2009) IL-27 blocks RORc expression to inhibit lineage commitment of Th17 cells. J Immunol 182:5748–5756

    Article  CAS  PubMed  Google Scholar 

  79. Wirtz S et al (2006) Protection from lethal septic peritonitis by neutralizing the biological function of interleukin 27. J Exp Med 203:1875–1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hibbert L, Pflanz S, De Waal Malefyt R, Kastelein RA (2003) IL-27 and IFN-alpha signal via Stat1 and Stat3 and induce T-Bet and IL-12Rbeta2 in naive T cells. J Interferon Cytokine Res 23:513–522

    Article  CAS  PubMed  Google Scholar 

  81. Villarino A et al (2003) The IL-27R (WSX-1) is required to suppress T cell hyperactivity during infection. Immunity 19:645–655

    Article  CAS  PubMed  Google Scholar 

  82. Fort MM et al (2001) IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15:985–995

    Article  CAS  PubMed  Google Scholar 

  83. Hurst SD et al (2002) New IL-17 family members promote Th1 or Th2 responses in the lung: in vivo function of the novel cytokine IL-25. J Immunol 169:443–453

    Article  CAS  PubMed  Google Scholar 

  84. Petersen BC, Lukacs NW (2012) IL-17A and IL-25: therapeutic targets for allergic and exacerbated asthmatic disease. Futur Med Chem 4:833–836

    Article  CAS  Google Scholar 

  85. Rickel EA et al (2008) Identification of functional roles for both IL-17RB and IL-17RA in mediating IL-25-induced activities. J Immunol 181:4299–4310

    Article  CAS  PubMed  Google Scholar 

  86. Lee J et al (2001) IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1. J Biol Chem 276:1660–1664

    Article  CAS  PubMed  Google Scholar 

  87. Liu C et al (2011) A CC’ loop decoy peptide blocks the interaction between Act1 and IL-17RA to attenuate IL-17- and IL-25-induced inflammation. Sci Signal 4:ra72

    PubMed  PubMed Central  Google Scholar 

  88. Liu Y, Munker S, Mullenbach R, Weng HL (2012) IL-13 signaling in liver fibrogenesis. Front Immunol 3:116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kleinschek MA et al (2007) IL-25 regulates Th17 function in autoimmune inflammation. J Exp Med 204:161–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zaph C et al (2008) Commensal-dependent expression of IL-25 regulates the IL-23-IL-17 axis in the intestine. J Exp Med 205:2191–2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kawanokuchi J et al (2008) Production and functions of IL-17 in microglia. J Neuroimmunol 194:54–61

    Article  CAS  PubMed  Google Scholar 

  92. •• Kebir H et al (2007) Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med 13:1173–1175. This paper reported the potential importance of T H 17 lymphocyte infiltration into the CNS and these lymphocytes’ consequent involvement in lesion formation in multiple sclerosis and experimental autoimmune encephalomyelitis

  93. Liu Q et al (2014) Interleukin-17 inhibits adult hippocampal neurogenesis. Sci Rep 4:7554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. • Shichita T et al (2009) Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat Med 15:946–950. IL-17A producing lymphocytes infiltrated into ischemia-reperfusion injured brain. The IL-17A producing gammadelta T cells played a pivotal role in the late stage of ischemic brain injury

  95. Hill F, Kim CF, Gorrie CA, Moalem-Taylor G (2011) Interleukin-17 deficiency improves locomotor recovery and tissue sparing after spinal cord contusion injury in mice. Neurosci Lett 487:363–367

    Article  CAS  PubMed  Google Scholar 

  96. Matsui T, Yoshida Y, Yanagihara M, Suenaga H (2014) Hypothermia at 35 degrees C reduces the time-dependent microglial production of pro-inflammatory and anti-inflammatory factors that mediate neuronal cell death. Neurocrit Care 20:301–310

    Article  CAS  PubMed  Google Scholar 

  97. Yan AW et al (2011) Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology 53:96–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kisseleva T (2014) Does interleukin-17 play the villain in nonalcoholic steatohepatitis? Hepatology 59:1671–1672

    Article  CAS  PubMed  Google Scholar 

  99. Scholten D et al (2011) Migration of fibrocytes in fibrogenic liver injury. Am J Pathol 179:189–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jeste DV, Depp CA (2010) Positive mental aging. Am J Geriatr Psychiatry 18:1–3

    Article  PubMed  PubMed Central  Google Scholar 

  101. Haynes L, Maue AC (2009) Effects of aging on T cell function. Curr Opin Immunol 21:414–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lim MA et al (2014) Increased Th17 differentiation in aged mice is significantly associated with high IL-1beta level and low IL-2 expression. Exp Gerontol 49:55–62

    Article  CAS  PubMed  Google Scholar 

  103. Hartigan-O’Connor DJ, Hirao LA, McCune JM, Dandekar S (2011) Th17 cells and regulatory T cells in elite control over HIV and SIV. Curr Opin HIV AIDS 6:221–227

    Article  PubMed  PubMed Central  Google Scholar 

  104. Gongvatana A et al (2014) A history of alcohol dependence augments HIV-associated neurocognitive deficits in persons aged 60 and older. J Neurovirol 20:505–513

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ivanov II et al (2008) Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4:337–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ivanov II et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fouts DE, Torralba M, Nelson KE, Brenner DA, Schnabl B (2012) Bacterial translocation and changes in the intestinal microbiome in mouse models of liver disease. J Hepatol 56:1283–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Supported by the National Institutes of Health (DK088837, U01AA022614, AI0777802 P50 AA011999).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Kisseleva.

Additional information

This article is part of the Topical Collection on Cytokines That Affect Liver Fibrosis and Activation of Hepatic Myofibroblasts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, HY., Xu, J., Liu, X. et al. The Role of IL-17 Signaling in Regulation of the Liver–Brain Axis and Intestinal Permeability in Alcoholic Liver Disease. Curr Pathobiol Rep 4, 27–35 (2016). https://doi.org/10.1007/s40139-016-0097-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-016-0097-3

Keywords

Navigation