Skip to main content

Advertisement

Log in

How PET/MR Can Add Value for Children with Cancer

Current Radiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To review how positron emission tomography/magnetic resonance (PET/MR) technology could add value for pediatric cancer patients.

Recent Findings

Since many primary tumors in children are evaluated with MR imaging and metastases are detected with PET/computed tomography (CT), integrated PET/MR can be a time-efficient and convenient solution for pediatric cancer staging. 18F-FDG PET/MR can assess primary tumors and the whole body in one imaging session, avoid repetitive anesthesia, and reduce radiation exposure compared to 18F-FDG PET/CT. This article lists 10 action points, which might improve the clinical value of PET/MR for children with cancer. However, even if PET/MR proves valuable, it cannot enter mainstream applications if it is not accessible to the majority of pediatric cancer patients. Therefore, innovations are needed to make PET/MR scanners affordable and increase patient throughput.

Summary

PET/MR offers opportunities for more efficient, accurate, and safe diagnoses of pediatric cancer patients. The impact on patient management and outcomes has to be substantiated by large-scale prospective clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Federman N, Feig SA. PET/CT in evaluating pediatric malignancies: a clinician’s perspective. J Nucl Med Off Publ Soc Nucl Med. 2007;48(12):1920–2. doi:10.2967/jnumed.107.046045.

    Google Scholar 

  2. Tatsumi M, Miller JH, Wahl RL. 18F-FDG PET/CT in evaluating non-CNS pediatric malignancies. J Nucl Med Off Publ Soc Nucl Med. 2007;48(12):1923–31. doi:10.2967/jnumed.107.044628.

    Google Scholar 

  3. Gerth HU, Juergens KU, Dirksen U, Gerss J, Schober O, Franzius C. Significant benefit of multimodal imaging: PET/CT compared with PET alone in staging and follow-up of patients with Ewing tumors. J Nucl Med Off Publ Soc Nucl Med. 2007;48(12):1932–9. doi:10.2967/jnumed.107.045286.

    Google Scholar 

  4. Kleis M, Daldrup-Link H, Matthay K, Goldsby R, Lu Y, Schuster T, et al. Diagnostic value of PET/CT for the staging and restaging of pediatric tumors. Eur J Nucl Med Mol Imaging. 2009;36(1):23–36. doi:10.1007/s00259-008-0911-1.

    Article  PubMed  Google Scholar 

  5. Uslu L, Donig J, Link M, Rosenberg J, Quon A, Daldrup-Link HE. Value of 18F-FDG PET and PET/CT for evaluation of pediatric malignancies. J Nucl Med. 2015;56(2):274–86. doi:10.2967/jnumed.114.146290.

    Article  PubMed  CAS  Google Scholar 

  6. Punwani S, Taylor SA, Bainbridge A, Prakash V, Bandula S, De Vita E, et al. Pediatric and adolescent lymphoma: comparison of whole-body STIR half-Fourier RARE MR imaging with an enhanced PET/CT reference for initial staging. Radiology. 2010;255(1):182–90. doi:10.1148/radiol.09091105.

    Article  PubMed  Google Scholar 

  7. Krohmer S, Sorge I, Krausse A, Kluge R, Bierbach U, Marwede D, et al. Whole-body MRI for primary evaluation of malignant disease in children. Eur J Radiol. 2010;74(1):256–61. doi:10.1016/j.ejrad.2009.01.037.

    Article  CAS  PubMed  Google Scholar 

  8. Kwee TC, van Ufford HM, Beek FJ, Takahara T, Uiterwaal CS, Bierings MB, et al. Whole-body MRI, including diffusion-weighted imaging, for the initial staging of malignant lymphoma: comparison to computed tomography. Investig Radiol. 2009;44(10):683–90. doi:10.1097/RLI.0b013e3181afbb36.

    Article  Google Scholar 

  9. Kwee TC, Takahara T, Ochiai R, Katahira K, Van Cauteren M, Imai Y, et al. Whole-body diffusion-weighted magnetic resonance imaging. Eur J Radiol. 2009;70(3):409–17. doi:10.1016/j.ejrad.2009.03.054.

    Article  PubMed  Google Scholar 

  10. Klenk C, Gawande R, Uslu L, Khurana A, Qiu D, Quon A, et al. Ionising radiation-free whole-body MRI versus (18)F-fluorodeoxyglucose PET/CT scans for children and young adults with cancer: a prospective, non-randomised, single-centre study. Lancet Oncol. 2014;15(3):275–85. doi:10.1016/S1470-2045(14)70021-X.

    Article  PubMed  Google Scholar 

  11. Hirsch FW, Sattler B, Sorge I, Kurch L, Viehweger A, Ritter L, et al. PET/MR in children. Initial clinical experience in paediatric oncology using an integrated PET/MR scanner. Pediatr Radiol. 2013;43(7):860–75. doi:10.1007/s00247-012-2570-4.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Schafer JF, Gatidis S, Schmidt H, Guckel B, Bezrukov I, Pfannenberg CA, et al. Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology. 2014;273(1):220–31. doi:10.1148/radiol.14131732.

    Article  PubMed  Google Scholar 

  13. Ponisio MR, McConathy J, Laforest R, Khanna G. Evaluation of diagnostic performance of whole-body simultaneous PET/MRI in pediatric lymphoma. Pediatr Radiol. 2016;46(9):1258–68. doi:10.1007/s00247-016-3601-3.

    Article  PubMed  Google Scholar 

  14. Bezrukov I, Schmidt H, Gatidis S, Mantlik F, Schafer JF, Schwenzer N, et al. Quantitative evaluation of segmentation- and atlas-based attenuation correction for PET/MR on pediatric patients. J Nucl Med. 2015;56(7):1067–74. doi:10.2967/jnumed.114.149476.

    Article  PubMed  Google Scholar 

  15. Purz S, Sabri O, Viehweger A, Barthel H, Kluge R, Sorge I, et al. Potential pediatric applications of PET/MR. J Nucl Med. 2014;55(Supplement 2):32S–9S. doi:10.2967/jnumed.113.129304.

    Article  CAS  PubMed  Google Scholar 

  16. Daldrup-Link H, Voss S, Donig J. ACR Committee on Pediatric Imaging Research. Pediatr Radiol. 2014;44:1193–4. doi:10.1007/s00247-013-2850-7.

    Article  Google Scholar 

  17. Robertson MS, Liu X, Plishker W, Zaki GF, Vyas PK, Safdar NM, et al. Software-based PET-MR image coregistration: combined PET-MRI for the rest of us! Pediatr Radiol. 2016;46(11):1552–61. doi:10.1007/s00247-016-3641-8.

    Article  PubMed  Google Scholar 

  18. Olcott P, Kim E, Hong K, Lee BJ, Grant AM, Chang CM, et al. Prototype positron emission tomography insert with electro-optical signal transmission for simultaneous operation with MRI. Phys Med Biol. 2015;60(9):3459–78. doi:10.1088/0031-9155/60/9/3459.

    Article  PubMed  Google Scholar 

  19. Amthauer H, Furth C, Denecke T, Hundsdoerfer P, Voelker T, Seeger K, et al. FDG-PET in 10 children with non-Hodgkin’s lymphoma: initial experience in staging and follow-up. Klin Padiatr. 2005;217(6):327–33. doi:10.1055/s-2005-872517.

    Article  CAS  PubMed  Google Scholar 

  20. Bakhshi S, Radhakrishnan V, Sharma P, Kumar R, Thulkar S, Vishnubhatla S, et al. Pediatric nonlymphoblastic non-Hodgkin lymphoma: baseline, interim, and posttreatment PET/CT versus contrast-enhanced CT for evaluation—a prospective study. Radiology. 2012;262(3):956–68. doi:10.1148/radiol.11110936.

    Article  PubMed  Google Scholar 

  21. Furth C, Steffen IG, Amthauer H, Ruf J, Misch D, Schonberger S, et al. Early and late therapy response assessment with [18F]fluorodeoxyglucose positron emission tomography in pediatric Hodgkin’s lymphoma: analysis of a prospective multicenter trial. J Clin Oncol. 2009;27(26):4385–91. doi:10.1200/JCO.2008.19.7814.

    Article  PubMed  Google Scholar 

  22. Sher AC, Seghers V, Paldino MJ, Dodge C, Krishnamurthy R, Krishnamurthy R, et al. Assessment of sequential PET/MRI in comparison with PET/CT of pediatric lymphoma: a prospective study. Am J Roentgenol. 2016;206(3):623–31. doi:10.2214/AJR.15.15083.

    Article  Google Scholar 

  23. Lyons K, Seghers V, Sorensen JI, Zhang W, Paldino MJ, Krishnamurthy R, et al. Comparison of standardized uptake values in normal structures between PET/CT and PET/MRI in a tertiary pediatric hospital: a prospective study. Am J Roentgenol. 2015;205(5):1094–101. doi:10.2214/AJR.15.14304.

    Article  Google Scholar 

  24. Balyasnikova S, Lofgren J, de Nijs R, Zamogilnaya Y, Hojgaard L, Fischer BM. PET/MR in oncology: an introduction with focus on MR and future perspectives for hybrid imaging. Am J Nucl Med Mol Imaging. 2012;2(4):458–74.

    PubMed  PubMed Central  Google Scholar 

  25. Drzezga A, Souvatzoglou M, Eiber M, Beer AJ, Furst S, Martinez-Moller A, et al. First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med. 2012;53(6):845–55. doi:10.2967/jnumed.111.098608.

    Article  PubMed  Google Scholar 

  26. Herzog H, Van Den Hoff J. Combined PET/MR systems: an overview and comparison of currently available options. Q J Nucl Med Mol Imaging. 2012;56(3):247–67.

    CAS  PubMed  Google Scholar 

  27. Platzek I, Beuthien-Baumann B, Langner J, Popp M, Schramm G, Ordemann R, et al. PET/MR for therapy response evaluation in malignant lymphoma: initial experience. MAGMA. 2013;26(1):49–55. doi:10.1007/s10334-012-0342-7.

    Article  CAS  PubMed  Google Scholar 

  28. Brenner DJ, Doll R, Goodhead DT, Hall EJ, Land CE, Little JB, et al. Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc Natl Acad Sci USA. 2003;100(24):13761–6. doi:10.1073/pnas.2235592100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hall EJ, Brenner DJ. Cancer risks from diagnostic radiology. Br J Radiol. 2008;81(965):362–78. doi:10.1259/bjr/01948454.

    Article  CAS  PubMed  Google Scholar 

  30. Robbins E. Radiation risks from imaging studies in children with cancer. Pediatr Blood Cancer. 2008;51(4):453–7. doi:10.1002/pbc.21599.

    Article  PubMed  Google Scholar 

  31. Health risks from exposure to low level of ionizing radiation: BEIR VII Phase 2. Washington, DC: Board on Radiation Effects Research (BRER), The National Academic Press; 2006.

  32. Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012;380(9840):499–505. doi:10.1016/S0140-6736(12)60815-0.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, et al. Cancer risk in 680000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ. 2013;346:f2360. doi:10.1136/bmj.f2360.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gatidis S, Schmidt H, la Fougere C, Nikolaou K, Schwenzer NF, Schafer JF. Defining optimal tracer activities in pediatric oncologic whole-body 18F-FDG-PET/MRI. Eur J Nucl Med Mol Imaging. 2016;. doi:10.1007/s00259-016-3503-5.

    PubMed  Google Scholar 

  35. Gawande RS, Khurana A, Messing S, Zhang D, Castaneda RT, Goldsby RE, et al. Differentiation of normal thymus from anterior mediastinal lymphoma and lymphoma recurrence at pediatric PET/CT. Radiology. 2012;262(2):613–22. doi:10.1148/radiol.11110715.

    Article  PubMed  Google Scholar 

  36. Klenk C, Gawande R, Tran VT, Leung JT, Chi K, Owen D, et al. Progressing toward a cohesive pediatric 18F-FDG PET/MR protocol: Is administration of gadolinium chelates necessary? J Nucl Med. 2016;57(1):70–7. doi:10.2967/jnumed.115.161646.

    Article  CAS  PubMed  Google Scholar 

  37. Aghighi M, Pisani LJ, Sun Z, Klenk C, Madnawat H, Fineman SL, et al. Speeding up PET/MR for cancer staging of children and young adults. Eur Radiol. 2016;. doi:10.1007/s00330-016-4332-4.

    PubMed  Google Scholar 

  38. Alessio AM, Kinahan PE, Manchanda V, Ghioni V, Aldape L, Parisi MT. Weight-based, low-dose pediatric whole-body PET/CT protocols. J Nucl Med. 2009;50(10):1570–7. doi:10.2967/jnumed.109.065912.

    Article  PubMed  Google Scholar 

  39. Siegel MJ, Acharyya S, Hoffer FA, Wyly JB, Friedmann AM, Snyder BS, et al. Whole-body MR imaging for staging of malignant tumors in pediatric patients: results of the American College of Radiology Imaging Network 6660 Trial. Radiology. 2013;266(2):599–609. doi:10.1148/radiol.12112531.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Daldrup-Link HE, Franzius C, Link TM, Laukamp D, Sciuk J, Jurgens H, et al. Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. Am J Roentgenol. 2001;177(1):229–36.

    Article  CAS  Google Scholar 

  41. Daldrup-Link HE, Link TM, Moller HE, Wiedermann D, Bonnemain B, Corot C, et al. Carboxymethyldextran-A2-Gd-DOTA enhancement patterns in the abdomen and pelvis in an animal model. Eur Radiol. 2001;11(7):1276–84.

    Article  CAS  PubMed  Google Scholar 

  42. Koh DM, Blackledge M, Collins DJ, Padhani AR, Wallace T, Wilton B, et al. Reproducibility and changes in the apparent diffusion coefficients of solid tumours treated with combretastatin A4 phosphate and bevacizumab in a two-centre phase I clinical trial. Eur Radiol. 2009;19(11):2728–38. doi:10.1007/s00330-009-1469-4.

    Article  PubMed  Google Scholar 

  43. Padhani AR, Koh DM, Collins DJ. Whole-body diffusion-weighted MR imaging in cancer: current status and research directions. Radiology. 2011;261(3):700–18. doi:10.1148/radiol.11110474.

    Article  PubMed  Google Scholar 

  44. van Ufford HM, Kwee TC, Beek FJ, van Leeuwen MS, Takahara T, Fijnheer R, et al. Newly diagnosed lymphoma: initial results with whole-body T1-weighted, STIR, and diffusion-weighted MRI compared with 18F-FDG PET/CT. Am J Roentgenol. 2011;196(3):662–9. doi:10.2214/AJR.10.4743.

    Article  Google Scholar 

  45. Gu J, Chan T, Zhang J, Leung AY, Kwong YL, Khong PL. Whole-body diffusion-weighted imaging: the added value to whole-body MRI at initial diagnosis of lymphoma. Am J Roentgenol. 2011;197(3):W384–91. doi:10.2214/AJR.10.5692.

    Article  Google Scholar 

  46. Abdulqadhr G, Molin D, Astrom G, Suurkula M, Johansson L, Hagberg H, et al. Whole-body diffusion-weighted imaging compared with FDG-PET/CT in staging of lymphoma patients. Acta Radiol. 2011;52(2):173–80. doi:10.1258/ar.2010.100246.

    Article  PubMed  Google Scholar 

  47. Ording Muller LS, Avenarius D, Olsen OE. High signal in bone marrow at diffusion-weighted imaging with body background suppression (DWIBS) in healthy children. Pediatr Radiol. 2011;41(2):221–6. doi:10.1007/s00247-010-1774-8.

    Article  PubMed  Google Scholar 

  48. Rosset A, Spadola L, Ratib O. OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging Off J Soc Comput Appl Radiol. 2004;17(3):205–16. doi:10.1007/s10278-004-1014-6.

    Google Scholar 

  49. Deak PD, Smal Y, Kalender WA. Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology. 2010;257(1):158–66. doi:10.1148/radiol.10100047.

    Article  PubMed  Google Scholar 

  50. Pepe M, Longton G, Janes H. Estimation and comparison of receiver operating characteristic curves. Stata J. 2009;9(1):1–16.

    PubMed  PubMed Central  Google Scholar 

  51. Gawande RS, Gonzalez G, Messing S, Khurana A, Daldrup-Link HE. Role of diffusion-weighted imaging in differentiating benign and malignant pediatric abdominal tumors. Pediatr Radiol. 2013;43(7):836–45. doi:10.1007/s00247-013-2626-0.

    Article  PubMed  Google Scholar 

  52. Cuccarini V, Erbetta A, Farinotti M, Cuppini L, Ghielmetti F, Pollo B, et al. Advanced MRI may complement histological diagnosis of lower grade gliomas and help in predicting survival. J Neurooncol. 2015;. doi:10.1007/s11060-015-1960-5.

    Google Scholar 

  53. Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009;11(2):102–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Afaq A, Andreou A, Koh DM. Diffusion-weighted magnetic resonance imaging for tumour response assessment: Why, when and how? Cancer Imaging. 2010;10(Spec no. A):S179–88. doi:10.1102/1470-7330.2010.9032.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Baum SH, Fruhwald M, Rahbar K, Wessling J, Schober O, Weckesser M. Contribution of PET/CT to prediction of outcome in children and young adults with rhabdomyosarcoma. J Nucl Med. 2011;52(10):1535–40. doi:10.2967/jnumed.110.082511.

    Article  CAS  PubMed  Google Scholar 

  56. Franzius C, Bielack S, Flege S, Sciuk J, Jurgens H, Schober O. Prognostic significance of (18)F-FDG and (99m)Tc-methylene diphosphonate uptake in primary osteosarcoma. J Nucl Med Off Publ Soc Nucl Med. 2002;43(8):1012–7.

    CAS  Google Scholar 

  57. Brenner W, Conrad EU, Eary JF. FDG PET imaging for grading and prediction of outcome in chondrosarcoma patients. Eur J Nucl Med Mol Imaging. 2004;31(2):189–95. doi:10.1007/s00259-003-1353-4.

    Article  PubMed  Google Scholar 

  58. Rakheja R, Chandarana H, DeMello L, Jackson K, Geppert C, Faul D, et al. Correlation between standardized uptake value and apparent diffusion coefficient of neoplastic lesions evaluated with whole-body simultaneous hybrid PET/MRI. Am J Roentgenol. 2013;201(5):1115–9. doi:10.2214/AJR.13.11304.

    Article  Google Scholar 

  59. Jackson T, Crawley A, Klenk C, Rubin D, Quon A, Daldrup-Link H. Correlation of 18F-FDG activity and diffusion restriction of rhabdomyosarcomas on PET/MR: potential additional prognostic factors. Clin Nucl Med. (under review).

  60. Strongin A, Yovino S, Taylor R, Wolf J, Cullen K, Zimrin A, et al. Primary tumor volume is an important predictor of clinical outcomes among patients with locally advanced squamous cell cancer of the head and neck treated with definitive chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2012;82(5):1823–30. doi:10.1016/j.ijrobp.2010.10.053.

    Article  PubMed  Google Scholar 

  61. Rodeberg DA, Stoner JA, Garcia-Henriquez N, Randall RL, Spunt SL, Arndt CA, et al. Tumor volume and patient weight as predictors of outcome in children with intermediate risk rhabdomyosarcoma: a report from the Children’s Oncology Group. Cancer. 2011;117(11):2541–50. doi:10.1002/cncr.25719.

    Article  PubMed  Google Scholar 

  62. Lu M, Cohen MH, Rieves D, Pazdur R. FDA report: ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am J Hematol. 2010;85(5):315–9. doi:10.1002/ajh.21656.

    CAS  PubMed  Google Scholar 

  63. Simon GH, von Vopelius-Feldt J, Fu Y, Schlegel J, Pinotek G, Wendland MF, et al. Ultrasmall supraparamagnetic iron oxide-enhanced magnetic resonance imaging of antigen-induced arthritis: a comparative study between SHU 555 C, ferumoxtran-10, and ferumoxytol. Investig Radiol. 2006;41(1):45–51.

    Article  Google Scholar 

  64. Muehe AM, Feng D, von Eyben R, Luna-Fineman S, Link MP, Muthig T, et al. Safety report of ferumoxytol for magnetic resonance imaging in children and young adults. Investig Radiol. 2016;51(4):221–7. doi:10.1097/RLI.0000000000000230.

    Article  CAS  Google Scholar 

  65. Kim H, Yu JS, Kim DJ, Chung JJ, Kim JH, Kim KW. Diffusion-weighted MR imaging before and after contrast enhancement with superparamagnetic iron oxide for assessment of hepatic metastasis. Yonsei Med J. 2012;53(4):825–33. doi:10.3349/ymj.2012.53.4.825.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Naganawa S, Sato C, Nakamura T, Kumada H, Ishigaki T, Miura S, et al. Diffusion-weighted images of the liver: comparison of tumor detection before and after contrast enhancement with superparamagnetic iron oxide. J Magn Reson Imaging. 2005;21(6):836–40. doi:10.1002/jmri.20346.

    Article  PubMed  Google Scholar 

  67. Masrouha KZ, Musallam KM, Samra AB, Tawil A, Haidar R, Chakhachiro Z, et al. Correlation of non-mass-like abnormal MR signal intensity with pathological findings surrounding pediatric osteosarcoma and Ewing’s sarcoma. Skelet Radiol. 2012;41(11):1453–61. doi:10.1007/s00256-012-1383-8.

    Article  Google Scholar 

  68. Hoffer FA, Nikanorov AY, Reddick WE, Bodner SM, Xiong X, Jones-Wallace D, et al. Accuracy of MR imaging for detecting epiphyseal extension of osteosarcoma. Pediatr Radiol. 2000;30(5):289–98. doi:10.1007/s002470050743.

    Article  CAS  PubMed  Google Scholar 

  69. Brisse H, Ollivier L, Edeline V, Pacquement H, Michon J, Glorion C, et al. Imaging of malignant tumours of the long bones in children: monitoring response to neoadjuvant chemotherapy and preoperative assessment. Pediatr Radiol. 2004;34(8):595–605. doi:10.1007/s00247-004-1192-x.

    Article  PubMed  Google Scholar 

  70. Kaste SC. Imaging pediatric bone sarcomas. Radiol Clin N Am. 2011;49(4):749–65, vi–vii. doi:10.1016/j.rcl.2011.05.006.

  71. Erlemann R, Reiser MF, Peters PE, Vasallo P, Nommensen B, Kusnierz-Glaz CR, et al. Musculoskeletal neoplasms: static and dynamic Gd-DTPA-enhanced MR imaging. Radiology. 1989;171(3):767–73. doi:10.1148/radiology.171.3.2717749.

    Article  CAS  PubMed  Google Scholar 

  72. James SL, Panicek DM, Davies AM. Bone marrow oedema associated with benign and malignant bone tumours. Eur J Radiol. 2008;67(1):11–21. doi:10.1016/j.ejrad.2008.01.052.

    Article  CAS  PubMed  Google Scholar 

  73. McDonald DJ. Limb-salvage surgery for treatment of sarcomas of the extremities. Am J Roentgenol. 1994;163(3):509–13; discussion 14–6. doi:10.2214/ajr.163.3.8079835.

  74. Rainusso N, Wang LL, Yustein JT. The adolescent and young adult with cancer: state of the art—bone tumors. Curr Oncol Rep. 2013;15(4):296–307. doi:10.1007/s11912-013-0321-9.

    Article  PubMed  Google Scholar 

  75. Gill J, Ahluwalia MK, Geller D, Gorlick R. New targets and approaches in osteosarcoma. Pharmacol Ther. 2013;137(1):89–99. doi:10.1016/j.pharmthera.2012.09.003.

    Article  CAS  PubMed  Google Scholar 

  76. Barr RD, Wunder JS. Bone and soft tissue sarcomas are often curable—but at what cost? A call to arms (and legs). Cancer. 2009;115(18):4046–54. doi:10.1002/cncr.24458.

    Article  PubMed  Google Scholar 

  77. Daldrup-Link HE, Mohanty A, Cuenod C, Pichler B, Link T. New perspectives on bone marrow contrast agents and molecular imaging. Semin Musculoskelet Radiol. 2009;13(2):145–56. doi:10.1055/s-0029-1220885.

    Article  PubMed  Google Scholar 

  78. Littooij AS, Torigian DA, Kwee TC, de Keizer B, Alavi A, Nievelstein RA. Potential clinical applications of PET/magnetic resonance imaging. PET Clin. 2013;8(3):367–84.

    Article  PubMed  Google Scholar 

  79. Hochhegger B, Marchiori E, Irion K, Moreira J, Zanetti G. MRI in assessment of lung cancer. Thorax. 2011;66(4):357. doi:10.1136/thx.2011.159111.

    Article  PubMed  Google Scholar 

  80. Chandarana H, Heacock L, Rakheja R, DeMello LR, Bonavita J, Block TK, et al. Pulmonary nodules in patients with primary malignancy: comparison of hybrid PET/MR and PET/CT imaging. Radiology. 2013;268(3):874–81. doi:10.1148/radiol.13130620.

    Article  PubMed  Google Scholar 

  81. Muehe A, Theruvath A, Lai L, Quon A, Aghighi M, Holdsworth S et al. PET/MR cancer staging of children and young adults: the Stanford approach. Eur Radiol. (under review 2017).

  82. Wegner EA, Barrington SF, Kingston JE, Robinson RO, Ferner RE, Taj M, et al. The impact of PET scanning on management of paediatric oncology patients. Eur J Nucl Med Mol Imaging. 2005;32(1):23–30. doi:10.1007/s00259-004-1645-3.

    Article  CAS  PubMed  Google Scholar 

  83. Montravers F, McNamara D, Landman-Parker J, Grahek D, Kerrou K, Younsi N, et al. [(18)F]FDG in childhood lymphoma: clinical utility and impact on management. Eur J Nucl Med Mol Imaging. 2002;29(9):1155–65. doi:10.1007/s00259-002-0861-y.

    Article  CAS  PubMed  Google Scholar 

  84. Depas G, De Barsy C, Jerusalem G, Hoyoux C, Dresse MF, Fassotte MF, et al. 18F-FDG PET in children with lymphomas. Eur J Nucl Med Mol Imaging. 2005;32(1):31–8. doi:10.1007/s00259-004-1604-z.

    Article  PubMed  Google Scholar 

  85. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122S–50S. doi:10.2967/jnumed.108.057307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Biggi A, Gallamini A, Chauvie S, Hutchings M, Kostakoglu L, Gregianin M, et al. International validation study for interim PET in ABVD-treated, advanced-stage Hodgkin lymphoma: interpretation criteria and concordance rate among reviewers. J Nucl Med. 2013;54(5):683–90. doi:10.2967/jnumed.112.110890.

    Article  CAS  PubMed  Google Scholar 

  87. Gupta K, Pawaskar A, Basu S, Rajan MG, Asopa RV, Arora B, et al. Potential role of FDG PET imaging in predicting metastatic potential and assessment of therapeutic response to neoadjuvant chemotherapy in Ewing sarcoma family of tumors. Clin Nucl Med. 2011;36(11):973–7. doi:10.1097/RLU.0b013e31822f684b.

    Article  PubMed  Google Scholar 

  88. McKinley ET, Bugaj JE, Zhao P, Guleryuz S, Mantis C, Gokhale PC, et al. 18FDG-PET predicts pharmacodynamic response to OSI-906, a dual IGF-1R/IR inhibitor, in preclinical mouse models of lung cancer. Clin Cancer Res. 2011;17(10):3332–40. doi:10.1158/1078-0432.CCR-10-2274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Metz S, Lohr S, Settles M, Beer A, Woertler K, Rummeny EJ, et al. Ferumoxtran-10-enhanced MR imaging of the bone marrow before and after conditioning therapy in patients with non-Hodgkin lymphomas. Eur Radiol. 2006;16(3):598–607. doi:10.1007/s00330-005-0045-9.

    Article  PubMed  Google Scholar 

  90. Daldrup-Link HE, Rummeny EJ, Ihssen B, Kienast J, Link TM. Iron-oxide-enhanced MR imaging of bone marrow in patients with non-Hodgkin’s lymphoma: differentiation between tumor infiltration and hypercellular bone marrow. Eur Radiol. 2002;12(6):1557–66. doi:10.1007/s00330-001-1270-5.

    Article  PubMed  Google Scholar 

  91. Daldrup-Link HE, Henning T, Link TM. MR imaging of therapy-induced changes of bone marrow. Eur Radiol. 2007;17(3):743–61. doi:10.1007/s00330-006-0404-1.

    Article  PubMed  Google Scholar 

  92. Ippolito D, Fior D, Trattenero C, Ponti ED, Drago S, Guerra L, et al. Combined value of apparent diffusion coefficient-standardized uptake value max in evaluation of post-treated locally advanced rectal cancer. World J Radiol. 2015;7(12):509–20. doi:10.4329/wjr.v7.i12.509.

    PubMed  PubMed Central  Google Scholar 

  93. Byun BH, Kong CB, Lim I, Choi CW, Song WS, Cho WH, et al. Combination of 18F-FDG PET/CT and diffusion-weighted MR imaging as a predictor of histologic response to neoadjuvant chemotherapy: preliminary results in osteosarcoma. J Nucl Med. 2013;54(7):1053–9. doi:10.2967/jnumed.112.115964.

    Article  CAS  PubMed  Google Scholar 

  94. Leibfarth S, Monnich D, Welz S, Siegel C, Schwenzer N, Schmidt H, et al. A strategy for multimodal deformable image registration to integrate PET/MR into radiotherapy treatment planning. Acta Oncol. 2013;52(7):1353–9. doi:10.3109/0284186X.2013.813964.

    Article  PubMed  Google Scholar 

  95. Paulus DH, Thorwath D, Schmidt H, Quick HH. Towards integration of PET/MR hybrid imaging into radiation therapy treatment planning. Med Phys. 2014;41(7):072505. doi:10.1118/1.4881317.

    Article  PubMed  Google Scholar 

  96. Hofmann M, Steinke F, Scheel V, Charpiat G, Farquhar J, Aschoff P, et al. MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med. 2008;49(11):1875–83. doi:10.2967/jnumed.107.049353.

    Article  PubMed  Google Scholar 

  97. DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, et al. Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin. 2014;64(4):252–71. doi:10.3322/caac.21235.

    Article  PubMed  Google Scholar 

  98. Hudson MM, Ness KK, Gurney JG, Mulrooney DA, Chemaitilly W, Krull KR, et al. Clinical ascertainment of health outcomes among adults treated for childhood cancer. J Am Med Assoc. 2013;309(22):2371–81. doi:10.1001/jama.2013.6296.

    Article  CAS  Google Scholar 

  99. Cullen J. Because statistics don’t tell the whole story: a call for comprehensive care for children with cancer. CA Cancer J Clin. 2014;64(2):79–82. doi:10.3322/caac.21215.

    Article  PubMed  Google Scholar 

  100. Goldsby RE, Liu Q, Nathan PC, Bowers DC, Yeaton-Massey A, Raber SH, et al. Late-occurring neurologic sequelae in adult survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2010;28(2):324–31. doi:10.1200/JCO.2009.22.5060.

    Article  PubMed  Google Scholar 

  101. Mahoney DH Jr, Shuster JJ, Nitschke R, Lauer SJ, Steuber CP, Winick N, et al. Acute neurotoxicity in children with B-precursor acute lymphoid leukemia: an association with intermediate-dose intravenous methotrexate and intrathecal triple therapy—a Pediatric Oncology Group Study. J Clin Oncol. 1998;16(5):1712–22.

    Article  CAS  PubMed  Google Scholar 

  102. Halsey C, Buck G, Richards S, Vargha-Khadem F, Hill F, Gibson B. The impact of therapy for childhood acute lymphoblastic leukaemia on intelligence quotients; results of the risk-stratified randomized central nervous system treatment trial MRC UKALL XI. J Hematol Oncol. 2011;4:42. doi:10.1186/1756-8722-4-42.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Brown TR, Vijarnsorn C, Potts J, Milner R, Sandor GG, Fryer C. Anthracycline induced cardiac toxicity in pediatric Ewing sarcoma: a longitudinal study. Pediatr Blood Cancer. 2013;60(5):842–8. doi:10.1002/pbc.24404.

    Article  CAS  PubMed  Google Scholar 

  104. Reulen RC, Winter DL, Frobisher C, Lancashire ER, Stiller CA, Jenney ME, et al. Long-term cause-specific mortality among survivors of childhood cancer. J Am Med Assoc. 2010;304(2):172–9. doi:10.1001/jama.2010.923.

    Article  CAS  Google Scholar 

  105. Karimova EJ, Wozniak A, Wu J, Neel MD, Kaste SC. How does osteonecrosis about the knee progress in young patients with leukemia? A 2- to 7-year study. Clin Orthop Relat Res. 2010;468(9):2454–9. doi:10.1007/s11999-010-1358-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mattano LA Jr, Sather HN, Trigg ME, Nachman JB. Osteonecrosis as a complication of treating acute lymphoblastic leukemia in children: a report from the Children’s Cancer Group. J Clin Oncol. 2000;18(18):3262–72.

    Article  PubMed  Google Scholar 

  107. Miettunen PM, Lafay-Cousin L, Guilcher GM, Nettel-Aguirre A, Moorjani V. Widespread osteonecrosis in children with leukemia revealed by whole-body MRI. Clin Orthop Relat Res. 2012;470(12):3587–95. doi:10.1007/s11999-012-2579-x.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Paakko E, Vainionpaa L, Pyhtinen J, Lanning M. Minor changes on cranial MRI during treatment in children with acute lymphoblastic leukaemia. Neuroradiology. 1996;38(3):264–8.

    Article  CAS  PubMed  Google Scholar 

  109. Pääkkö E, Harila-Saari A, Vanionpää L, Himanen S, Pyhtinen J, Lanning M. White matter changes on MRI during treatment in children with acute lymphoblastic leukemia: correlation with neuropsychological findings. Med Pediatr Oncol. 2000;35(5):456–61.

    Article  PubMed  Google Scholar 

  110. Cheung YT, Sabin ND, Reddick WE, Bhojwani D, Liu W, Brinkman TM, et al. Leukoencephalopathy and long-term neurobehavioural, neurocognitive, and brain imaging outcomes in survivors of childhood acute lymphoblastic leukaemia treated with chemotherapy: a longitudinal analysis. Lancet Haematol. 2016;3(10):e456–66. doi:10.1016/S2352-3026(16)30110-7.

    Article  PubMed  Google Scholar 

  111. Bhojwani D, Sabin ND, Pei D, Yang JJ, Khan RB, Panetta JC, et al. Methotrexate-induced neurotoxicity and leukoencephalopathy in childhood acute lymphoblastic leukemia. J Clin Oncol. 2014;32(9):949–59. doi:10.1200/JCO.2013.53.0808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Perneczky R, Diehl-Schmid J, Drzezga A, Kurz A. Brain reserve capacity in frontotemporal dementia: a voxel-based 18F-FDG PET Study. Eur J Nucl Med Mol Imaging. 2007;34:1082–7. doi:10.1007/s00259-006-0323-z.

    Article  PubMed  Google Scholar 

  113. Rasgon NL, Geist CL, Kenna HA, Wroolie TE, Williams KE, Silverman DHS. Prospective randomized trial to assess effects of continuing hormone therapy on cerebral function in postmenopausal women at risk for dementia. PLoS ONE. 2014;9:e89095. doi:10.1371/journal.pone.0089095.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Rubnitz J, Relling M, Harrison P, Sandlund J, Ribeiro R, Rivera G, et al. Transient encephalopathy following high-dose methotrexate treatment in childhood acute lymphoblastic leukemia. Leukemia. 1998;12(8):1176–81.

    Article  CAS  PubMed  Google Scholar 

  115. Chiaravalloti A, Pagani M, Di Pietro B, Danieli R, Tavolozza M, Travascio L, et al. Is cerebral glucose metabolism affected by chemotherapy in patients with Hodgkin’s lymphoma? Nucl Med Commun. 2013;34(1):57–63.

    Article  CAS  PubMed  Google Scholar 

  116. Chiaravalloti A, Pagani M, Cantonetti M, Di Pietro B, Tavolozza M, Travascio L, et al. Brain metabolic changes in Hodgkin disease patients following diagnosis and during the disease course: an 18F-FDG PET/CT Study. Oncol Lett. 2015;9(2):685–90.

    PubMed  Google Scholar 

  117. Ponto LLB, Menda Y, Magnotta VA, Yamada TH, Denburg NL, Schultz SK. Frontal hypometabolism in elderly breast cancer survivors determined by [18F] fluorodeoxyglucose (FDG) positron emission tomography (PET): a pilot study. Int J Geriatr Psychiatry. 2015;30(6):587–94. doi:10.1002/gps.4189.

  118. Theruvath A, Ilivitzki A, Muehe A, Theruvath J, Luna-Fineman S, Sakamoto S, et al. PET/MRI of chemotherapy-induced brain, heart and bone injuries. Radiology (under review 2017).

Download references

Acknowledgements

This work was supported by a Grant from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, Grant Number R01 HD081123-01A1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike E. Daldrup-Link.

Ethics declarations

Conflict of interest

Heike Daldrup-Link declares no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Nuclear Medicine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daldrup-Link, H.E. How PET/MR Can Add Value for Children with Cancer. Curr Radiol Rep 5, 15 (2017). https://doi.org/10.1007/s40134-017-0207-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40134-017-0207-y

Keywords

Navigation