Skip to main content
Log in

Investigation of ROS scavenging properties and in vitro cytotoxicity of oxygen-deficient La2O3-x nanostructure synthesized by spray pyrolysis method

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

Oxygen-deficient metal oxides have seen increased application in the field of free radical biology, whereby their electronic structure imparts unique antioxidant properties. In this work, we use the facile, one-step, cost-effective method of spray pyrolysis to synthesize oxygen-deficient lanthanum oxide (La2O3-x), nanoparticles. Structural and morphological characterization revealed the formation of an aggregate of La2O3-x nanocrystals in the form of hollow spheres. Photocatalytic activity (PCA) was benchmarked against commercial La2O3 and Evonik Aeroxide® TiO2 P25 via dye degradation experiments and a significant pH dependence of PCA is reported. Furthermore, chemical assays based on the Fenton reaction verified the scavenging properties of the synthesized materials towards reactive oxygen species (ROS), with increased scavenging of hydroxyl (OH) and superoxide (O2∙–) radicals observed at pH 4.8. Biological assays (in vitro), with a 24 h incubation period in the presence of the La2O3-x nanoparticles, were conducted upon a non-malignant human keratinocyte cell line (HaCaT). The La2O3-x nanoparticles showed no toxicity when compared with the control over a significant concentration range. Biocompatibility with the non-malignant HaCaT cell line suggests the future application of La2O3-x as a doping material for inorganic oxides used as UV filters or as an antioxidant to mitigate oxidative stress by scavenging free radicals in conditions such as melanoma and inflammation.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Skulachev, V.P.: Mitochondria-targeted antioxidants as promising drugs for treatment of age-related brain diseases. J. Alzheimers Dis. 28(2), 283–289 (2012)

    CAS  Google Scholar 

  2. Trachootham, D., Alexandre, J., Huang, P.: Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug. Discov. 8(7), 579 (2009)

    CAS  Google Scholar 

  3. Puspita, L., Chung, S.Y., Shim, J.-W.: Oxidative stress and cellular pathologies in Parkinson’s disease. Mol. Brain 10(1), 53 (2017)

    Google Scholar 

  4. Sies, H.: Oxidative stress: a concept in redox biology and medicine. Redox Biol. 4, 180–183 (2015)

    CAS  Google Scholar 

  5. Schieber, M., Chandel, N.S.: ROS function in redox signaling and oxidative stress. Curr. Biol. 24(10), R453–R462 (2014)

    CAS  Google Scholar 

  6. Ingold, K.U., Pratt, D.A.: Advances in radical-trapping antioxidant chemistry in the 21st century: a kinetics and mechanisms perspective. Chem. Rev. 114(18), 9022–9046 (2014)

    CAS  Google Scholar 

  7. Cadet, J., Wagner, J.R.: Oxidatively generated base damage to cellular DNA by hydroxyl radical and one-electron oxidants: similarities and differences. Arch. Biochem. Biophys. 557, 47–54 (2014)

    CAS  Google Scholar 

  8. Zhang, H., Forman, H.J.: 4-hydroxynonenal-mediated signaling and aging. Free Radic. Biol. Med. 111, 219–225 (2017)

    CAS  Google Scholar 

  9. Morry, J., Ngamcherdtrakul, W., Yantasee, W.: Oxidative stress in cancer and fibrosis: Opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles. Redox Biol. 11, 240–253 (2017)

    CAS  Google Scholar 

  10. Valgimigli, L., Baschieri, A., Amorati, R.: Antioxidant activity of nanomaterials. J. Mater. Chem. B 6(14), 2036–2051 (2018)

    CAS  Google Scholar 

  11. Thannickal, V.J., Fanburg, B.L.: Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell Mol. Physiol. 279(6), L1005–L1028 (2000)

    CAS  Google Scholar 

  12. Jeong Kim, T., Seok Chae, K., Chang, Y., Ho Lee, G.: Gadolinium oxide nanoparticles as potential multimodal imaging and therapeutic agents. Curr. Top. Med. Chem. 13(4), 422–433 (2013)

    Google Scholar 

  13. Yin, J., Chen, D., Zhang, Y., Li, C., Liu, L., Shao, Y.: MRI relaxivity enhancement of gadolinium oxide nanoshells with a controllable shell thickness. Phys. Chem. Chem. Phys. 20(15), 10038–10047 (2018)

    CAS  Google Scholar 

  14. Salem, R., Thurston, K.G., Carr, B.I., Goin, J.E., Geschwind, J.-F.H.: Yttrium-90 microspheres: radiation therapy for unresectable liver cancer. J. Vasc. Interv. Radiol. 13(9), S223–S229 (2002)

    Google Scholar 

  15. Campbell, C.T., Peden, C.H.: Oxygen vacancies and catalysis on ceria surfaces. Science 309(5735), 713–714 (2005)

    CAS  Google Scholar 

  16. Suh, W.H., Suslick, K.S., Stucky, G.D., Suh, Y.-H.: Nanotechnology, nanotoxicology, and neuroscience. Prog. Neurobiol. 87(3), 133–170 (2009)

    CAS  Google Scholar 

  17. Song, H.-T., Choi, J.-S., Huh, Y.-M., Kim, S., Jun, Y.-W., Suh, J.-S., Cheon, J.: Surface modulation of magnetic nanocrystals in the development of highly efficient magnetic resonance probes for intracellular labeling. J. Am. Chem. Soc. 127(28), 9992–9993 (2005)

    CAS  Google Scholar 

  18. Silva, G.A.: Neuroscience nanotechnology: progress, opportunities and challenges. Nat. Rev. Neurosci. 7(1), 65 (2006)

    CAS  Google Scholar 

  19. Faraji, A.H., Wipf, P.: Nanoparticles in cellular drug delivery. Bioorg. Med. Chem. 17(8), 2950–2962 (2009)

    CAS  Google Scholar 

  20. Rehman, F., Zhao, C., Jiang, H., Wang, X.: Biomedical applications of nano-titania in theranostics and photodynamic therapy. Biomater. Sci. 4(1), 40–54 (2016)

    CAS  Google Scholar 

  21. Chen, Y.-W., Moussi, J., Drury, J.L., Wataha, J.C.: Zirconia in biomedical applications. Expert Rev. Med. Devic. 13(10), 945–963 (2016)

    CAS  Google Scholar 

  22. Dunnick, K.M., Pillai, R., Pisane, K.L., Stefaniak, A.B., Sabolsky, E.M., Leonard, S.S.: The effect of cerium oxide nanoparticle valence state on reactive oxygen species and toxicity. Biol. Trace Elem. Res. 166(1), 96–107 (2015)

    CAS  Google Scholar 

  23. Pulido-Reyes, G., Rodea-Palomares, I., Das, S., Sakthivel, T.S., Leganes, F., Rosal, R., Seal, S., Fernández-Piñas, F.: Untangling the biological effects of cerium oxide nanoparticles: the role of surface valence states. Sci. Rep. 5, 15613 (2015)

    CAS  Google Scholar 

  24. Hirosaki, N., Ogata, S., Kocer, C.: Ab initio calculation of the crystal structure of the lanthanide Ln2O3 sesquioxides. J. Alloys Compd. 351(1–2), 31–34 (2003)

    CAS  Google Scholar 

  25. Zinkevich, M.: Thermodynamics of rare earth sesquioxides. Prog. Mater. Sci. 52(4), 597–647 (2007)

    CAS  Google Scholar 

  26. Morozov, N.N., Morozov, E.: The heat capacity, thermodynamic functions, and 4f-electron states of rare-earth compounds: Rare-earth oxides of the A type. High Temp. 38(5), 705–714 (2000)

    CAS  Google Scholar 

  27. Panichev, A.: Rare earth elements: review of medical and biological properties and their abundance in the rock materials and mineralized spring waters in the context of animal and human geophagia reasons evaluation. Achiev. Life Sci. 9(2), 95–103 (2015)

    Google Scholar 

  28. Nieminen, M., Putkonen, M., Niinistö, L.: Formation and stability of lanthanum oxide thin films deposited from β-diketonate precursor. Appl. Surf. Sci. 174(2), 155–166 (2001)

    CAS  Google Scholar 

  29. Sanivarapu, S.R., Lawrence, J.B., Sreedhar, G.: Role of surface oxygen vacancies and lanthanide contraction phenomenon of Ln(OH)3 (Ln= La, Pr, and Nd) in sulfide-mediated photoelectrochemical water splitting. ACS Omega 3(6), 6267–6278 (2018)

    CAS  Google Scholar 

  30. Seitz, M., Oliver, A.G., Raymond, K.N.: The lanthanide contraction revisited. J. Am. Chem. Soc. 129(36), 11153–11160 (2007)

    CAS  Google Scholar 

  31. Cho, J.S., Kang, Y.C.: Nano-sized hydroxyapatite powders prepared by flame spray pyrolysis. J. Alloys Compd. 464(1–2), 282–287 (2008)

    CAS  Google Scholar 

  32. Ozcelik, B.K., Ergun, C.: Synthesis and characterization of iron oxide particles using spray pyrolysis technique. Ceram. Int. 41(2), 1994–2005 (2015)

    CAS  Google Scholar 

  33. Ozcelik, B.K., Ergun, C.: Synthesis of ZnO nanoparticles by an aerosol process. Ceram. Int. 40(5), 7107–7116 (2014)

    CAS  Google Scholar 

  34. Lenggoro, I.W., Hata, T., Iskandar, F., Lunden, M.M., Okuyama, K.: An experimental and modeling investigation of particle production by spray pyrolysis using a laminar flow aerosol reactor. J. Mater. Res. 15(3), 733–743 (2000)

    CAS  Google Scholar 

  35. Lenggoro, I.W., Okuyama, K., de la Mora, J.F., Tohge, N.: Preparation of ZnS nanoparticles by electrospray pyrolysis. J. Aerosol Sci. 31(1), 121–136 (2000)

    CAS  Google Scholar 

  36. Hu, C., Liu, H., Dong, W., Zhang, Y., Bao, G., Lao, C., Wang, Z.L.: La(OH)3 and La2O3 nanobelts—synthesis and physical properties. Adv. Mater. 19(3), 470–474 (2007)

    CAS  Google Scholar 

  37. Nowicki, W., Rypka, G., Kawałko, A., Tolińska, A., Kirszensztejn, P.: Synthesis and characterization of SiO2–La2O3 gels obtained in a water-free environment. J. Mater. Sci. 49(13), 4416–4422 (2014)

    CAS  Google Scholar 

  38. Klingenberg, B., Vannice, M.A.: Influence of pretreatment on lanthanum nitrate, carbonate, and oxide powders. Chem. Mater. 8(12), 2755–2768 (1996)

    CAS  Google Scholar 

  39. Tang, T., Deng, H.Q., Jiang, Q.Y., Huo, J.C., Hu, S.H.: Preparation of Bismuth-Lanthanum composite oxide and its photocatalytic performance. Adv. Mater. Res. 616, 1667–1670 (2013)

    Google Scholar 

  40. Kafadaryan, Y., Petrosyan, S., Badalyan, G., Lazaryan, V., Shirinyan, G., Aghamalyan, N., Hovsepyan, R., Semerjian, H., Igityan, A., Kuzanyan, A.: Structural characteristics of La2O3 thin film grown on LaB6. In: Int. J. Mod. Phys.: Conference Series 2012, vol. 15, pp. 61–66. World Scientific.

  41. Liu, J., Wang, G., Lu, L., Guo, Y., Yang, L.: Facile shape-controlled synthesis of lanthanum oxide with different hierarchical micro/nanostructures for antibacterial activity based on phosphate removal. RSC Adv. 7(65), 40965–40972 (2017)

    CAS  Google Scholar 

  42. Wang, K., Wu, Y., Li, H., Li, M., Guan, F., Fan, H.: A hybrid antioxidizing and antibacterial material based on Ag–La2O3 nanocomposites. J. Inorg. Biochem. 141, 36–42 (2014)

    CAS  Google Scholar 

  43. Morlando, A., Borrás, M.C., Rehman, Y., Bakand, S., Barker, P., Sluyter, R., Konstantinov, K.: Development of CeO2 nanodot encrusted TiO2 nanoparticles with reduced photocatalytic activity and increased biocompatibility towards a human keratinocyte cell line. J. Mater. Chem. B 8(18), 4016–4028 (2020)

    CAS  Google Scholar 

  44. Escobedo-Morales, A., Ruiz-López, I., Ruiz-Peralta, M.D., Tepech-Carrillo, L., Sánchez-Cantú, M., Moreno-Orea, J.: Automated method for the determination of the band gap energy of pure and mixed powder samples using diffuse reflectance spectroscopy. Heliyon 5(4), e01505 (2019)

    CAS  Google Scholar 

  45. Bindu, P., Thomas, S.: Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 8(4), 123–134 (2014)

    Google Scholar 

  46. Muhammed Shafi, P., Chandra Bose, A.: Impact of crystalline defects and size on X-ray line broadening: A phenomenological approach for tetragonal SnO2 nanocrystals. AIP Adv. 5(5), 057137 (2015)

    Google Scholar 

  47. Mentus, S., Jelić, D., Grudić, V.: Lanthanum nitrate decomposition by both temperature programmed heating and citrate gel combustion. J. Therm. Anal. Calorim. 90(2), 393–397 (2007)

    CAS  Google Scholar 

  48. Leng, J., Wang, Z., Wang, J., Wu, H.-H., Yan, G., Li, X., Guo, H., Liu, Y., Zhang, Q., Guo, Z.: Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion. Chem. Soc. Rev. 48(11), 3015–3072 (2019)

    CAS  Google Scholar 

  49. Neumann, A., Walter, D.: The thermal transformation from lanthanum hydroxide to lanthanum hydroxide oxide. Thermochim. Acta 445(2), 200–204 (2006)

    CAS  Google Scholar 

  50. Sunding, M., Hadidi, K., Diplas, S., Løvvik, O., Norby, T., Gunnæs, A.: XPS characterisation of in situ treated lanthanum oxide and hydroxide using tailored charge referencing and peak fitting procedures. J. Electron Spectros. Relat. Phenomena 184(7), 399–409 (2011)

    CAS  Google Scholar 

  51. Li, J.P.H., Zhou, X., Pang, Y., Zhu, L., Vovk, E.I., Cong, L., van Bavel, A.P., Li, S., Yang, Y.: Understanding of binding energy calibration in XPS of lanthanum oxide by in situ treatment. Phys. Chem. Chem. Phys. 21(40), 22351–22358 (2019)

    CAS  Google Scholar 

  52. Maiti, D., Daza, Y.A., Yung, M.M., Kuhn, J.N., Bhethanabotla, V.R.: Oxygen vacancy formation characteristics in the bulk and across different surface terminations of La(1–x)SrxFe(1−y)CoyO(3−δ) perovskite oxides for CO2 conversion. J. Mater. Chem. A 4(14), 5137–5148 (2016)

    CAS  Google Scholar 

  53. Stoychev, D., Valov, I., Stefanov, P., Atanasova, G., Stoycheva, M., Marinova, T.: Electrochemical growth of thin La2O3 films on oxide and metal surfaces. Mater. Sci. Eng. C 23(1–2), 123–128 (2003)

    Google Scholar 

  54. Ganduglia-Pirovano, M.V., Hofmann, A., Sauer, J.: Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges. Surf. Sci. Rep. 62(6), 219–270 (2007)

    CAS  Google Scholar 

  55. Konstantinou, I.K., Albanis, T.A.: TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B Environ. 49(1), 1–14 (2004)

    CAS  Google Scholar 

  56. Colon, J., Herrera, L., Smith, J., Patil, S., Komanski, C., Kupelian, P., Seal, S., Jenkins, D.W., Baker, C.H.: Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. Nanomed-Nanotechnol. 5(2), 225–231 (2009)

    CAS  Google Scholar 

  57. Mariotto, S., de Prati, A.C., Cavalieri, E., Amelio, E., Marlinghaus, E., Suzuki, H.: Extracorporeal shock wave therapy in inflammatory diseases: molecular mechanism that triggers anti-inflammatory action. Curr. Med. Chem. 16(19), 2366–2372 (2009)

    CAS  Google Scholar 

  58. Pu, H.-L., Chiang, W.-L., Maiti, B., Liao, Z.-X., Ho, Y.-C., Shim, M.S., Chuang, E.-Y., Xia, Y., Sung, H.-W.: Nanoparticles with dual responses to oxidative stress and reduced pH for drug release and anti-inflammatory applications. ACS Nano 8(2), 1213–1221 (2014)

    CAS  Google Scholar 

  59. Xie, J., Wang, Z., Lu, S., Wu, D., Zhang, Z., Kong, H.: Removal and recovery of phosphate from water by lanthanum hydroxide materials. Chem. Eng. J. 254, 163–170 (2014)

    CAS  Google Scholar 

  60. Neyens, E., Baeyens, J.: A review of classic Fenton’s peroxidation as an advanced oxidation technique. J. Hazard Mater. 98(1–3), 33–50 (2003)

    CAS  Google Scholar 

  61. Patnaik, P.: Handbook of inorganic chemicals, vol. 529. McGraw-Hill, New York (2003)

    Google Scholar 

  62. Gunawan, C., Lord, M.S., Lovell, E., Wong, R.J., Jung, M.S., Oscar, D., Mann, R., Amal, R.: Oxygen-vacancy engineering of cerium-oxide nanoparticles for antioxidant activity. ACS Omega 4(5), 9473–9479 (2019)

    CAS  Google Scholar 

  63. Kulperger, R., Okun, R., Munford, G.: Methods and compositions using lanthanum for removing phosphate from water. In. U.S. Patent No. 6,524,487. 25 Feb. (2003)

  64. Reddy, S.S., Berchmans, L.J., Sreedhar, G.: Imperfect oriented attachment of lanthanum hydroxide nanoparticles. CrystEngComm 21(25), 3829–3835 (2019)

    CAS  Google Scholar 

  65. Uy, B., McGlashan, S.R., Shaikh, S.B.: Measurement of reactive oxygen species in the culture media using Acridan Lumigen PS-3 assay. J. Biomol. Tech. JBT 22(3), 95 (2011)

    Google Scholar 

  66. Liu, L., Xie, H., Chen, X., Shi, W., Xiao, X., Lei, D., Li, J.: Differential response of normal human epidermal keratinocytes and HaCaT cells to hydrogen peroxide-induced oxidative stress. Clin. Exp. Dermatol. Exp. Dermatol. 37(7), 772–780 (2012)

    CAS  Google Scholar 

Download references

Acknowledgements

This research work is a part of University of Wollongong (UOW) Global challenge program “Next Generation Sunscreens”, carried out at the Institute of Super Conducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), and the Illawarra Health & Medical Research Institute (IHMRI), UOW. In addition, the financial support also provided under the joint scholarship program of Higher education commission (HEC) Pakistan and UOW, Australia. We would like to thank Dr. Dongqi Shi (ISEM, UOW) for his assistance in XPS measurements. Furthermore, the authors acknowledge the use of Electron Microscopy facility (EMC), AIIM, at University of Wollongong, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Konstantinov.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, Y., Copet, C., Morlando, A. et al. Investigation of ROS scavenging properties and in vitro cytotoxicity of oxygen-deficient La2O3-x nanostructure synthesized by spray pyrolysis method. J Nanostruct Chem 10, 347–361 (2020). https://doi.org/10.1007/s40097-020-00356-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-020-00356-8

Keywords

Navigation