Skip to main content
Log in

Electromagnetically induced grating in semiconductor quantum dot and metal nanoparticle hybrid system by considering nonlocality effects

  • Research
  • Published:
Journal of Theoretical and Applied Physics

Abstract

The optical polarization from a hybrid system including a closely spaced spherical SQD (modeled as a three-level V-type system) and a metal nanoparticle which are considered classically and are connected by the dipole–dipole interaction mechanism is investigated. The interaction between the SQD and the MNP shows an interesting optical response. In the weak probe field regime and MNP nonlocality correction, the absorption spectrum of the hybrid system exhibits an EIT window with two absorption peaks and the plasmon-assisted quantum interference plays an important role in the position and amplitude of these peaks, which are intensely altered by including the nonlocal effects. The probe diffraction grating is created based on the excitons-induced transparency by applying a standing-wave coupling field. The results of this study are useful in numerous areas of all-optical communications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Naseri, T., Asadpour, S.H., Sadighi-Bonab, R.: Some optical properties of four-level media via coherent and incoherent pumping fields. J. Opt. Soc. Am. B (JOSA B) 30(3), 641–648 (2013)

    Article  ADS  Google Scholar 

  2. Naseri, T., Pour-Khavari, F.: Bimetallic core-shell with graphene coating nanoparticles: enhanced optical properties and slow light propagation. Plasmonics (2020). https://doi.org/10.1007/s11468-019-01101-w

    Article  Google Scholar 

  3. Naseri, T., Balaei, M.: Enhanced nonlinear optical response of coreshell graphene-wrapped spherical nanoparticles. J. Opt. Soc. Am. B (JOSA B) 35(9), 2278–2285 (2018)

    Article  ADS  Google Scholar 

  4. Naseri, T., Balaei, M., Kakavand, Y.: Convenient dual optical bistability in cavity-free structure based on nonlinear graphene-plasmonic nanoparticles composite thin layers. OSA Contin. 2(8), 2401–2412 (2019)

    Article  Google Scholar 

  5. Naseri, T., Balaei, M.: Tunable coherent perfect absorption via an asymmetric graphene-based structure. Eur. Phys. J. Plus 135, 102 (2020)

    Article  Google Scholar 

  6. OShea, D., Junge, Ch., Volz, J., Rauschenbeutel, A.: Fiber-optical switch controlled by a single atom. Phys. Rev. Lett, 111, 193601 (2013)

    Article  ADS  Google Scholar 

  7. Xu, J., Al-Amri, M., Yang, Y., Zhu, Sh-Y, Zubairy, M.S.: Wide-band optical switch via white light cavity. Phys. Rev. A 86, 033828 (2012)

    Article  ADS  Google Scholar 

  8. Othman, A., Yevick, D., Al-Amri, M.: Generation of three wide frequency bands within a single white-light cavity. Phys. Rev. A 97, 043816 (2018)

    Article  ADS  Google Scholar 

  9. Brown, A.W., Xiao, M.: All-optical switching and routing based on an electromagnetically induced absorption grating. Opt. Lett. 30(7), 699–701 (2001)

    Article  ADS  Google Scholar 

  10. Harris, S.E., Yamamoto, Y.: Photon switching by quantum interference. Phys. Rev. Lett 81, 3611 (1998)

    Article  ADS  Google Scholar 

  11. Resch, K.J., Lundeen, J.S., Steinberg, A.M.: Conditional-phase switch at the single-photon level. Phys. Rev. Lett. 89, 037904 (2002)

    Article  ADS  Google Scholar 

  12. Naseri, T.: Investigation of dual electromagnetically induced grating based on spatial modulation in quantum well nanostructures via biexciton coherence. Laser Phys. 27, 045401 (2017)

    Article  ADS  Google Scholar 

  13. Sadighi-Bonabi, R., Naseri, T.: Theoretical investigation of electromagnetically induced phase grating in RF-driven cascade-type atomic systems. Appl. Opt. 54(11), 3484–3490 (2015)

    Article  ADS  Google Scholar 

  14. Ziauddin, S.A., Qamar, Sh, Qamar, S.: Electromagnetically induced grating with Rydberg atoms. Phys. Rev. A 94, 033823 (2016)

    Article  ADS  Google Scholar 

  15. Bozorgzadeh, F., Sahrai, M.: All-optical grating in a V+= configuration using a Rydberg state. Phys. Rev. A 98, 043822 (2018)

    Article  ADS  Google Scholar 

  16. Zhou, F., Qi, Y., Sun, H., Chen, D., Yang, J., Niu, Y., Gong, Sh: Electromagnetically induced grating in asymmetric quantum wells via Fano interference. Opt. Express 21(10), 12249–12259 (2013)

    Article  ADS  Google Scholar 

  17. Naseri, T., Moradi, R.: Realization of electromagnetically induced phase grating and Kerr nonlinearity in a graphene ensemble under Raman excitation. Superlattices Microstruct. 101, 592–601 (2017)

    Article  ADS  Google Scholar 

  18. Sadeghi, S.M.: Plasmonic metaresonances: molecular resonances in quantum dotmetallic nanoparticle conjugates. Phys. Rev. B 79, 233309 (2009)

    Article  ADS  Google Scholar 

  19. Zhang, W., Govorov, A.O., Bryant, G.W.: Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect. Phys. Rev. Lett. 97, 146804 (2006)

    Article  ADS  Google Scholar 

  20. Artuso, R.D., Bryant, G.W.: Strongly coupled quantum dot-metal nanoparticle systems: exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects. Phys. Rev. B 82, 195419 (2010)

    Article  ADS  Google Scholar 

  21. He, Y., Jiang, Ch., Chen, B., Li, J.-J., Zhu, K.-D.: Optical determination of vacuum Rabi splitting in a semiconductor quantum dot induced by a metal nanoparticle. Opt. Lett. 37(14), 2943–2945 (2012)

    Article  ADS  Google Scholar 

  22. Hatef, A., Sadeghi, S.M., Singh, M.R.: Plasmonic electromagnetically induced transparency in metallic nanoparticlequantum dot hybrid systems. Nanotechnology 23, 065701 (2012)

    Article  ADS  Google Scholar 

  23. Xiao, Zh-H, Zheng, L., Lin, H-Zh: Photoinduced diffraction grating in hybrid artificial molecule. Opt. Express 20(2), 1219–1229 (2012)

    Article  ADS  Google Scholar 

  24. You, Y., Qi, Y.-H., Niu, Y.-P., Gong, Sh-Q: Control of electromagnetically induced grating by surface plasmon and tunneling in a hybrid quantum dotmetal nanoparticle system. J. Phys. Condens. Matter 31, 105801 (2019)

    Article  ADS  Google Scholar 

  25. Naseri, T.: Optical properties and electromagnetically induced grating in a hybrid semiconductor quantum dot-metallic nanorod system. Phys. Lett. A 384, 126164 (2020)

    Article  Google Scholar 

  26. Ruppin, R.: Optical properties of a plasma sphere. Phys. Rev. Lett. 31(24), 1434–1437 (1973)

    Article  ADS  Google Scholar 

  27. Pendry, J.B., Aubry, A., Smith, D.R., Maier, S.A.: Transformation optics and subwavelength control of light. Science 337(6094), 549–552 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  28. Luo, Y., Dominguez, A.I.F., Wiener, A., Maier, S.A., Pendry, J.B.: Surface plasmons and nonlocality: a simple model. Phys. Rev. Lett. 111, 093901 (2013)

    Article  ADS  Google Scholar 

  29. Cottancin, E., Celep, G., Lerm, J., Pellarin, M., Huntzinger, J.R., Vialle, J.L., Broyer, M.: Optical properties of noble metal clusters as a function of the size: comparison between experiments and a semi-quantal theory. Theor. Chem. Acc. 116, 514 (2006)

    Article  Google Scholar 

  30. Mross, D.F., McGreevy, J., Liu, Hong, Senthil, T.: Controlled expansion for certain non-Fermi-liquid metals. Phys. Rev. B 82, 045121 (2010)

    Article  ADS  Google Scholar 

  31. Link, S., El-Sayed, M.A.: Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410–8426 (1999)

    Article  Google Scholar 

  32. Mukhopadhyay, G., Lundqvist, S.: Non-local optical effects at metal surfaces. Phys. Scr. 17, 69 (1978)

    Article  ADS  Google Scholar 

  33. Petruccione, F., Breuer, Heinz-Peter: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  34. Benson, O.: Assembly of hybrid photonic architectures from nanophotonic constituents. Nature 480, 193 (2011)

    Article  ADS  Google Scholar 

  35. Karrasch, C., Hecht, T., Weichselbaum, A., Oreg, Y., Delft, J.V., Meden, V.: Mesoscopic to universal crossover of the transmission phase of multilevel quantum dots. Phys. Rev. Lett. 98, 186802 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayebeh Naseri.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naseri, T. Electromagnetically induced grating in semiconductor quantum dot and metal nanoparticle hybrid system by considering nonlocality effects. J Theor Appl Phys 14, 129–135 (2020). https://doi.org/10.1007/s40094-020-00373-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40094-020-00373-6

Keywords

Navigation