Skip to main content

Advertisement

Log in

Antidiabetic potentials of green-synthesized alpha iron oxide nanoparticles using stem extract of Securidaca longipedunculata

  • Original Article
  • Published:
International Nano Letters Aims and scope Submit manuscript

Abstract

The study evaluated the antidiabetic potentials of green-synthesized iron oxide (Fe2O3) nanoparticles using stem extract of Securidaca longipedunculata. Fe2O3 nanoparticles were synthesized via green route and characterized using different analytical tools. Diabetes was induced in albino Wister rats by a single dose intraperitoneal injection of 90 mg/kg bodyweight of alloxan monohydrate and treated for 21 days. Lipid profiles, biochemical parameters and histopathological study of the liver and kidney were also examined. The characterization results confirmed formation of spherical, hematite phase of iron oxide with crystallite size of 4.07 nm and maximum wavelength of 372.27 nm. There was a significant (p < 0.05) decrease in blood glucose level of the diabetic rats from 409.50 ± 5.50 to 199.1550 ± 9.33 mg/dL in Fe2O3 nanoparticle group compared to the diabetic and extract control groups. Group treated with Fe2O3 nanoparticle shows an increase in bodyweight throughout the treatment period and is significantly different (p < 0.05) with the other groups. There is a significant difference (p < 0.05) in serum alanine transaminase (ALT), aspartate transaminase (AST) and alanine phosphatase (ALP) of the Fe2O3 nanoparticles treated group with Glibenclamide and diabetic control group. The histopathology of the liver and kidney shows normal histoarchitecture with no features of acute or chronic damage in all groups. The green-synthesized Fe2O3 nanoparticles have the potential of treating hyperglycemia and could serve as drug lead in the treatment of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Plate 1
Plate 2

Similar content being viewed by others

References

  1. Ali, L.M.A., Shaker, S.A., Pinol, R., Millan, A., Hanafy, M.Y., Helmy, M.H., Kamel, M.A., Mahmoud, S.A.: Effect of superparamagnetic iron oxide nanoparticles on glucose homeostasis on type 2 diabetes experimental model. Life Sci. 245, 117361 (2020)

    Article  CAS  Google Scholar 

  2. Simcox, J.A., McClain, D.A.: Iron and diabetes risk. Cell Metab. 17(3), 329–341 (2013). https://doi.org/10.1016/j.cmet.2013.02.007

    Article  CAS  Google Scholar 

  3. Ovais, M., Khalil, A.T., Islam, N.U., Ahmad, I., Ayaz, M., Saravanan, M., Shinwari, Z.K., Mukherjee, S.: Role of plant phytochemicals and microbial enzymes inbiosynthesis of metallic nanoparticles. Appl. Microbiol. Biotechnol. 102(16), 6799–6814 (2018). https://doi.org/10.1007/s00253-018-9146-7

    Article  CAS  Google Scholar 

  4. El-Boubbou, K.: Magnetic iron oxide nanoparticles as drug carriers: preparation, conjugation and delivery. Nanomedicine 13, 929–952 (2017)

    Article  CAS  Google Scholar 

  5. Ponnaiah, S., Rajan, J.: A review on iron oxide nanoparticles and their biomedical applications. J. Supercond. Nov. Magn. 31, 3397–3413 (2018)

    Article  CAS  Google Scholar 

  6. Demirer, G.S., Okur, A.C., Kizilel, S.: Synthesis and design of biologically inspired biocompatible iron oxide nanoparticles for biomedical applications. J. Mater. Chem. B 3, 7831–7849 (2015)

    Article  CAS  Google Scholar 

  7. Parka, J., Kadasala, N.R., Abouelmagd, S.A., Castanares, M.A., Collins, D.S., Wei, A., Yeo, Y.: Polymer–iron oxide composite nanoparticles for EPR-independent drug delivery. Biomaterials 101, 285–295 (2016)

    Article  CAS  Google Scholar 

  8. Banerji, B., Pramanik, S.K., Mandal, S., Maiti, N.C., Chaudhuri, K.: Synthesis, characterization and cytotoxicity study of magnetic (Fe3O4) nanoparticles and their drug conjugate. RSC Adv. 2, 2493–2497 (2012)

    Article  CAS  Google Scholar 

  9. Vasantharaj, S., Sathiyavimal, S., Senthilkumar, P., LewisOscar, F., Pugazhendhi, A.: Biosynthesis of iron oxide nanoparticles using leaf extract of Ruellia tuberosa: antimicrobial properties and their applications in photocatalytic degradation. J. Photochem. Photobiol. B Biol. 192, 74–82 (2019)

    Article  CAS  Google Scholar 

  10. Devi HS, Boda MA, Shah MA, Parveen S, Wani AH.: Green synthesis of iron oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity. Green Process. Synth. 8(1), 38–45 (2019)

    Article  CAS  Google Scholar 

  11. Muthukumar, H., Mohammed, S.N., Chandrasekaran, N.I., Sekar, A.D., Pugazhendhi, A., Matheswaran, M.: Effect of iron doped zinc oxide nanoparticles coating in the anode on current generation in microbial electrochemical cells. Int. J. Hydrogen Energy 44, 2407–2416 (2019)

    Article  CAS  Google Scholar 

  12. Ahmed, E.M.: Hydrogel: preparation, characterization, and applications: a review. J. Adv. Res. 6(2), 105–121 (2015)

    Article  CAS  Google Scholar 

  13. Khalil, A.T., Ovais, M., Ullah, I., Ali, M., Shinwari, Z.K., Maaza, M.: Biosynthesis of iron oxide (Fe2O3) nanoparticles via aqueous extracts of Sageretia thea (Osbeck.) and their pharmacognostic properties. Green Chem. Lett. Rev. 10, 186–201 (2017)

    Article  CAS  Google Scholar 

  14. Ovais, M., Khalil, A.T., Raza, A., Khan, M.A., Ahmad, I., Islam, N.U., Saravanan, M., Ubaid, M.F., Ali, M., Shinwari, Z.K.: Green synthesis of silver nanoparticles via plant extracts: beginning a new era in cancer theranostics. Nanomedicine 12, 3157–3177 (2016)

    Article  CAS  Google Scholar 

  15. Khalil, A.T., Ovais, M., Ullah, I., Ali, M., Shinwari, Z.K., Hassan, D., Maaza, M.: Sageretia thea (Osbeck.) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. Artif. Cells Nanomed. Biotechnol. 46, 1–15 (2017). https://doi.org/10.1080/21691401.2017.1345928

    Article  CAS  Google Scholar 

  16. Khalil, A.T., Ovais, M., Ullah, I., Ali, M., Shinwari, Z.K., Khamlich, S., Maaza, M.: Sageretia thea (Osbeck.) mediated synthesis of zinc oxide nanoparticles and its biological applications. Nanomedicine 12, 1767–1789 (2017)

    Article  CAS  Google Scholar 

  17. Ovais, M., Raza, A., Naz, S., Islam, N.U., Khalil, A.T., Ali, S., Khan, M.A., Shinwari, Z.K.: Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics. Appl. Microbiol. Biotechnol. 101, 3551–3565 (2017)

    Article  CAS  Google Scholar 

  18. Kasithevar, M., Saravanan, M., Prakash, P., Kumar, H., Ovais, M., Barabadi, H., Shinwari, Z.K.: Green synthesis of silver nanoparticles using Alysicarpus monilifer leaf extract and its antibacterial activity against MRSA and CoNS isolates in HIV patients. J. Interdiscip. Nanomed. 2, 131–141 (2017)

    Article  CAS  Google Scholar 

  19. Khan, M.A., Raza, A., Ovais, M., Sohail, M.F., Ali, S.: Current state and prospects of nano-delivery systems for sorafenib. Int. J. Polym. Mater. (2018). https://doi.org/10.1080/00914037.2018.1429434

    Article  Google Scholar 

  20. Alkaladi, A., Abdelazim, A.M., Afifi, M.: Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. Int. J. Mol. Sci. 15, 2015–2023 (2015)

    Article  CAS  Google Scholar 

  21. Shaheen, T.I., El-Naggar, M.E., Hussein, J.S., El-Bana, M., Emara, E., El-Khayat, Z.: Antidiabetic assessment; in vivo study of gold and core–shell silver–gold nanoparticles on streptozotocin-induced diabetic rats. Biomed. Pharmacother. 83, 865–887 (2016)

    Article  CAS  Google Scholar 

  22. Sharifi, S., Daghighi, S., Motazacker, M.M., Badlou, B., Sanjabi, B., Akbarkhanzadeh, A.: Superparamagnetic iron oxide nanoparticles alter expression of obesity and T2 associated risk genes in human adipocytes. Sci. Rep. 3, 2173 (2013)

    Article  CAS  Google Scholar 

  23. Tshisikhawe M.P, Baloyi O, Maanda HL-M.: Ecología poblacional de Securidaca longepedunculata Fresen. en la Reserva Natural Nylsvley, Provincia Limpopo, Sudáfric. Phyton (Buenos Aires) 81, 51–58 (2012)

    Google Scholar 

  24. Tikisa, T., Abdissa, D., Abdissa, N.: Chemical constituents of Securidaca longipedunculata root bark and evaluation of their antibacterial activities. Ethiop. J. Educ. Sci. 14, 2 (2019)

    Google Scholar 

  25. Mongalo, N.I., McGaw, L.J., Finnie, J.F., Van Staden, J.: Securidaca longipedunculata Fresen (Polygalaceae): a review of its ethnomedicinal uses, phytochemistry, pharmacological properties and toxicology. J. Ethnopharmacol. 165, 215–226 (2015)

    Article  CAS  Google Scholar 

  26. Simeon, K.A., ImohImeh, J., Gbola, O.: Plants in respiratory disorders I antiasthmatics, a review. Br. J. Pharm. Res. 16, 1–22 (2017)

    Google Scholar 

  27. Keay, R.W.J., Onochie, C.F.A., Stanfield, D.P.: Nigerian trees. Department of Forest Research Publishers, Ibadan (1964)

    Google Scholar 

  28. Ejikeme, C.M., Ezeonu, C.S., Eboatu, A.N.: Determination of physical and phytochemical constituents of some tropical timbers indigenous to Niger Delta Area of Nigeria. Eur. Sci. J. 10(18), 247–270 (2014)

    Google Scholar 

  29. Hikino, H., Kiso, Y., Wagner, H., Fiebig, M.: Antihepatotoxic actions of flavonolignans from Silybum marianum fruits. Planta Med. 50(3), 248–250 (1984)

    Article  CAS  Google Scholar 

  30. Bibi, I., Nazar, N., Ata, S., Sultan, M., Ali, A., Abbas, A., Jilani, K., Kamal, S., Sarim, F.M., Khan, I., Jalal, F., Iqbal, M.: Green synthesis of iron oxide nanoparticles using pomegranate seEDX extract and photocatalytic activity evaluation for the degradation of textile dye. J. Mater. Res. Technol. 8(6), 6115–6124 (2019)

    Article  CAS  Google Scholar 

  31. Ojiako, A.O., Chikezie, P.C., Ogbuji, C.A.: Histopathological studies of renal and hepatic tissues of hyperglycemic rats administered with traditional herbal formulations. Int. J. Green Pharm. 9, 184–191 (2015)

    Article  Google Scholar 

  32. Belayneh, Y.M., Birru, E.M., Ambikar, D.: Evaluation of hypoglycemic, antihyperglycemic and antihyperlipidemic activities of 80% methanolic seed extract of Calpurnia aurea (Ait.) Benth. (Fabaceae) in mice. J. Exp. Pharmacol. 11, 73–83 (2019). https://doi.org/10.2147/JEP.S212206

    Article  CAS  Google Scholar 

  33. Friedewald, W., Levy, R., Fredrickson, D.: Estimation of concentration of low-density lipoprotein in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18, 499–502 (1972)

    Article  CAS  Google Scholar 

  34. Oluba, O.M., Olusola, A.O., Eidangbe, G.O., Babatola, L.J., Onyeneke, E.C.: Modulation of lipoprotein cholesterol levels in Plasmodium berghei malarial infection by crude aqueous extract of Ganoderma lucidum. Cholesterol 6, 53–63 (2012)

    Google Scholar 

  35. Burnstein, M.A., Sammaille, J.A.: rapid determination of cholesterol bound to A and B lipoprotein. Clin. Chem. Acta 5, 601–609 (1960)

    Google Scholar 

  36. Bhuiyan, S.H., Miah, M.Y., Paul, S.C., Aka, T.D., Saha, O., Rahaman, M., Habiba, J.I.O., Ashaduzzaman, M.D.: Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity. Heliyon (2020). https://doi.org/10.1016/j.heliyon.2020.e04603

    Article  Google Scholar 

  37. Behera, S.S., Patra, J.K., Pramanik, K., Panda, N., Thatoi, H.: Characterization and evaluation of antibacterial activities of chemically synthesized iron oxide nanoparticles. World J. Nanosci. Eng. 2, 196 (2012)

    Article  CAS  Google Scholar 

  38. Fouad, D.F., Zhang, C., El-Didamony, H., Yingnan, L., Mekuria, T.D., Shah, A.H.: Improved size, morphology and crystallinity of hematite (α-Fe2O3) nanoparticles synthesized via the precipitation route using ferric sulfate precursor. Results Phys. 12, 1253–1261 (2019). https://doi.org/10.1016/j.rinp.2019.01.005

    Article  Google Scholar 

  39. Ahmmad, B., Leonard, K., Islam, S., Kurawaki, J., Muruganandham, M.: Green synthesis of mesoporous hematite (α-Fe2O3) nanoparticles and their photocatalytic activity. Adv. Powder Technol. 24(1), 160–167 (2013)

    Article  CAS  Google Scholar 

  40. Suresh, S., Karthikeyan, S., Jayamoorthy, K.: Effect of bulk and nano-Fe2O3 particles on peanut plant leaves studied by Fourier transform infrared spectral studies. J. Adv. Res. 7, 739–747 (2016)

    Article  CAS  Google Scholar 

  41. Lassoued, A., Lassoued, M.S., Dkhil, B., Ammar, S., Gadri, A.: Photocatalytic degradation of methylene blue dye by iron oxide (α-Fe2O3) nanoparticles under visible irradiation. J. Mater. Sci. Mater. Electron. 29, 8142–8152 (2018)

    Article  CAS  Google Scholar 

  42. Lamiaa, M.A.A., Sara, A.S., Rafael, P., Millan, A., Mervat, Y.H., Madiha, H.H., Maher, A.K., Shimaa, A.M.: Effect of superparamagnetic iron oxide nanoparticles on glucose homeostasis on type 2 diabetes experimental model. Life Sci. 245, 117361 (2020)

    Article  CAS  Google Scholar 

  43. Liu, J., Li, Q., Yang, Y., Ma, L.: Iron metabolism and type 2 diabetes mellitus: a meta-analysis and systematic review. J. Diabetes Investig. 11, 946–955 (2020). https://doi.org/10.1111/jdi.13216

    Article  CAS  Google Scholar 

  44. Carlos, A.R., Weis, S., Soares, M.P.: Cross-talk between iron and glucose metabolism in the establishment of disease tolerance. Front. Immunol. 9, 2498 (2018). https://doi.org/10.3389/fimmu.2018.02498

    Article  CAS  Google Scholar 

  45. Bhardwaj, M., Yadav, P., Vashishth, D., Sharma, K., Kumar, A., Chahal, J., Dalal, S., Kataria, S.K.: A review on obesity management through natural compounds and a green nanomedicine-based approach. Molecules 26(11), 3278 (2021)

    Article  CAS  Google Scholar 

  46. Balan, K., Qing, W., Wang, Y., Liu, X., Palvannan, T., Wang, Y., Ma, F., Zhang, Y.: Antidiabetic activity of silver nanoparticles from green synthesis using Lonicera japonica leaf extract. RSC Adv. 6(46), 40162–40168 (2016)

    Article  CAS  Google Scholar 

  47. Najafabadi, R.E., Kazemipour, N., Esmaeili, A., Beheshti, S., Nazifi, S.: Quercetin prevents body weight loss due to the using of superparamagnetic iron oxide nanoparticles in rat. Adv. Biomed. Res. 7(8), 14–17 (2018). https://doi.org/10.4103/abr.abr_141_17

    Article  CAS  Google Scholar 

  48. Szalay, B., Tátrai, E., Nyírő, G., Vezér, T., Dura, G.: Potential toxic effects of iron oxide nanoparticles in in vivo and in vitro experiments. J. Appl. Toxicol. 32, 446–453 (2012)

    Article  CAS  Google Scholar 

  49. Zhu, M.T., Wang, Y., Feng, W.Y., Wang, B., Wang, M., Ouyang, H.: Oxidative stress and apoptosis induced by iron oxide nanoparticles in cultured human umbilical endothelial cells. J. Nanosci. Nanotechnol. 10, 8584–8590 (2012)

    Article  CAS  Google Scholar 

  50. Khan, M.I., Mohammad, A., Patil, G., Naqvi, S.A., Chauhan, L.K., Ahmad, I.: Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials 33, 1477–1488 (2012)

    Article  CAS  Google Scholar 

  51. Alarifi, S., Ali, D., Alkahtani, S., Alhader, M.S.: Iron oxide nanoparticles induce oxidative stress, DNA damage, and caspase activation in the human breast cancer cell line. Biol. Trace Elem. Res. 159, 416–424 (2014)

    Article  CAS  Google Scholar 

  52. Ikewuchi, J.C., Onyeike, E.N., Uwakwe, A.A., Ikewuchi, C.C.: Effect of aqueous extract of the leaves of Acalypha wilkesiana ‘Godseffiana’ Muell Arg (Euphorbiaceae) on the hematology, plasma biochemistry and ocular indices of oxidative stress in alloxan induced diabetic rats. J. Ethnopharmacol. 137(3), 1415–1424 (2017). https://doi.org/10.1016/j.jep.2011.08.015

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augustine Innalegwu Daniel.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Ethics approval and consent to participate

The study protocol was approved by the Ethical Committee of the Federal University Technology, Minna Nigeria and assigned number: 000022.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daniel, A.I., Umar, M.B., Tijani, O.J. et al. Antidiabetic potentials of green-synthesized alpha iron oxide nanoparticles using stem extract of Securidaca longipedunculata. Int Nano Lett 12, 281–293 (2022). https://doi.org/10.1007/s40089-022-00377-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40089-022-00377-x

Keywords

Navigation