Skip to main content
Log in

A spatial stochastic epidemic model: law of large numbers and central limit theorem

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

We consider an individual-based SIR stochastic epidemic model in continuous space. The evolution of the epidemic involves the rates of infection and recovering of individuals. We assume that individuals move randomly on the two-dimensional torus according to independent Brownian motions. We define the sequences of empirical measures, which describe the evolution of the positions of the susceptible, infected and removed individuals. We prove the convergence in probability, as the size of the population tends to infinity, of those sequences of measures towards the solution of a system of parabolic PDEs. We show that appropriately centrered renormalized sequences of fluctuations around the above limit converge in law, as the size of the population tends to infinity, towards a Gaussian distribution valued process, solution of a system of linear PDEs with highly singular Gaussian driving processes. In the case where the individuals do not move we also define and study the law of large numbers and central limit theorem for the same sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, Amsterdam (1975)

    MATH  Google Scholar 

  2. Allen, L.J.S., Bolker, B.M., Lou, Y., Nevai, A.L.: Asymptotic profiles of the steady states for an SIS epidemic reaction diffusion model. Discrete Contin. Dyn. Syst. Ser. A 21, 1–20 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andersson, H., Britton, T.: Stochastic Epidemic Models and Their Statistical Analysis, Springer Lecture Notes in Statistics. Springer, New York (2000)

    MATH  Google Scholar 

  4. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  5. Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley, New York (1999)

    Book  MATH  Google Scholar 

  6. Blount, D.: Density-dependant limits for a nonlinear reaction diffusion models. Ann. Probab. 22(4), 2040–2070 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Britton, T., Pardoux, E.: Stochastic epidemic in a homogeneous community. In: Britton, T., Pardoux, E. (eds.) Part I of Stochastic Epidemic Models with Inference. Lecture Notes in Mathematics, vol. 2225, pp. 1–120. Springer, Berlin (2019)

    Chapter  Google Scholar 

  8. Clémençon, S., Tran, V.C., de Arazoza, H.: A stochastic SIR model with contact tracing: large population limits and statistical inference. J. Biol. Dyn. 2(4), 392–414 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  10. Joffe, A., Métivier, M.: Weak convergence of sequences of semimartingales with applications to multitype branching processes. Adv. Appl. Probab. 18(1), 20–65 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kaj, I.: A weak interaction epidemic among diffusive particles. In: Etheridge, A. (ed.) Stochastic Partial Differential Equations. London Math. Soc. Lecture Note Series, vol. 216, pp. 189–208. Cambridge Univ. Press, Cambridge (1995)

    Google Scholar 

  12. Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 320. Springer, Berlin (1999)

    MATH  Google Scholar 

  13. Kotelenez, P.: High density limit theorems for non linear chemical reactions with diffusion. Probab. Theory Relat. Fields 78, 11–37 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kotelenez, P.: A stopped Doob inequality for stochastic convolution integrals and stochastic evolution equations. Stoch. Anal. Appl. 2(3), 245–265 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lalley, S.P., Perkins, E.A., Zheng, X.: A phase transition for measure-valued SIR epidemic processes. Ann. Probab. 42, 237–310 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Métivier, M.: Convergence faible et principe d’invariance pour des martingales à valeurs dans des espaces de Sobolev. Annales de l’IHP 20(4), 329–348 (1984)

  17. N’zi, M., Pardoux, É., Yeo, T.: A SIR model on a refining spatial grid I—Law of Large Numbers. Appl. Math. Optim. 83, 1153-1189

  18. Pardoux, E.: Equations aux dérivées partielles stochastiques non linéaires monotones. Etudes des solutions fortes de type Itô, Thesis (1975)

  19. Pardoux, E.: Stochastic partial differential equations and filtering of diffusion processes. Stochastics 3, 127–167 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pardoux, E.: Probabilistic Models of Population Evolution. Scaling Limits, Genealogies and Interactions. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  21. Pardoux, E.: Moderate deviations and extinction of an epidemic. Electron. J. Probab. 25(paper 25), 1–27 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Roelly-Coppoletta, S.: A criterion of convergence of measure-valued processes: application to measure branching processes. Stochastics 17, 43–65 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Roques, L., Bonnefon, O., Baudrot, V., Soubeyrand, S., Berestycki, H.: A parsimonious model for spatial transmission and heterogeneity in the COVID-19 propagation. R. Soc. Open Sci. 7, 201382 (2020)

    Article  Google Scholar 

  24. Taylor, M.E.: Partial Differential Equations. III. Nonlinear Equations. Springer, Berlin (1991)

    Google Scholar 

Download references

Funding

Alphonse Emakoua was supported by EMS Simons For Africa and an Eiffel scholarship program of excellence, and the two other authors by their respective university.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Emakoua.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We first recall that for any \(s>0\), the family \((\rho ^{i,s}_{n_{1},n_{2}})_{i,n_{1},n_{2}}\) (as defined in Proposition 2.3) is an orthonormal basis of \(H^{s}({\mathbb {T}}^{2})\).

In this appendix we prove the next two Lemmas.

Lemma 7.1

We have,

$$\begin{aligned}&\displaystyle \underset{x\in {\mathbb {T}}^{2}}{\sup }\sum \limits _{i,n_{1},n_{2}}(\rho _{n_{1},n_{2}}^{i,s}(x))^{2}<\infty ~\text {iff}~ s>1,\\&\quad \displaystyle \underset{x\in {\mathbb {T}}^{2}}{\sup }\sum \limits _{i,n_{1},n_{2}}(\nabla \rho _{n_{1},n_{2}}^{i,s}(x))^{2}<\infty ~\text {iff}~s>2. \end{aligned}$$

Proof

As for any \(x\in {\mathbb {T}}^{2}\), \(i \in [|1,8|]\), \(0\le (f_{n_{1},n_{2}}^{i}(x))^{2}\le 4\),

$$\begin{aligned} \displaystyle \sum \limits _{i,n_{1},n_{2}}(\rho _{n_{1},n_{2}}^{i,s}(x))^{2}= & {} \displaystyle \sum \limits _{i,n_{1},n_{2}}\frac{(f_{n_{1},n_{2}}^{i})^{2}(x)}{(1+\gamma \pi ^{2}(n_{1}^{2}+n_{2}^{2}))^{s}} , \hbox { and }\\ \displaystyle \sum \limits _{i,n_{1},n_{2}} (\nabla \rho _{n_{1},n_{2}}^{i,s}(x))^{2}= & {} \displaystyle \pi ^{2}\sum \limits _{i=1}^{4}\sum \limits _{n_{1}>0,n_{2}>0,even}\frac{n_{1}^{2}+n_{2}^{2}}{(1+\gamma \pi ^{2}(n_{1}^{2}+n_{2}^{2}))^{s}}(f_{n_{1},n_{2}}^{i})^{2}(x)\\&+\sum \limits _{n_{1}>0,even}\frac{\pi ^{2}n_{1}^{2}[(f_{n_{1},0}^{6})^{2}(x)+(f_{n_{1},0}^{5})^{2}(x)]}{(1+\gamma \pi ^{2}n_{1}^{2})^{s}}\\&+\sum \limits _{n_{2}>0,even}\frac{\pi ^{2}n_{2}^{2}[(f_{n_{1},0}^{8})^{2}(x)+(f_{n_{1},0}^{7})^{2}(x)]}{(1+\gamma \pi ^{2}n_{2}^{2})^{s}} \\ \end{aligned}$$

So

$$\begin{aligned} \displaystyle \sum \limits _{i,n_{1},n_{2}}\{(\rho _{n_{1},n_{2}}^{i,s}(x))^{2}\le & {} 1+ 16 \sum \limits _{n_{1}>0,n_{2}>0,even}\frac{1}{(1+\gamma \pi ^{2}(n_{1}^{2}+n_{2}^{2}))^{s}}\\&+\,8\sum \limits _{i=1}^{2}\sum \limits _{n_{i}>0,even}\frac{1}{(1+\gamma \pi ^{2}n_{i}^{2})^{s}}, and\\ \displaystyle \sum \limits _{i,n_{1},n_{2}}(\nabla \rho _{n_{1},n_{2}}^{i,s}(x))^{2}\le & {} 16\pi ^{2}\sum \limits _{n_{1}>0,n_{2}>0,even}\frac{n_{1}^{2}+n_{2}^{2}}{(1+\gamma \pi ^{2}(n_{1}^{2}+n_{2}^{2}))^{s}}\\&+\,8\pi ^{2}\sum \limits _{i=1}^{2}\sum \limits _{n_{i}>0,even}\frac{n_{i}^{2}}{(1+\gamma \pi ^{2}n_{i}^{2})^{s}}\\ \end{aligned}$$

Hence we see that:

  • \(\displaystyle \sum \limits _{i,n_{1},n_{2}}(\rho _{n_{1},n_{2}}^{i,s}(x))^{2}<\infty \) provided the series \( \sum \limits _{n_{1}>0,n_{2}>0}\frac{1}{(1+\gamma \pi ^{2}(n_{1}^{2}+n_{2}^{2}))^{s}}\); \( \sum \limits _{n_{1}>0}\frac{1}{(1+\gamma \pi ^{2}n_{1}^{2})^{s}}\) and \( \sum \limits _{n_{2}>0}\frac{1}{(1+\gamma \pi ^{2}n_{2}^{2})^{s}}\) converge.

  • \( \displaystyle \sum \limits _{i,n_{1},n_{2}}(\nabla \rho _{n_{1},n_{2}}^{i,s}(x))^{2}<\infty \) provided the series \(\sum \limits _{n_{1}>0,n_{2}>0}\frac{n_{1}^{2}+n_{2}^{2}}{(1+\gamma \pi ^{2}(n_{1}^{2}+n_{2}^{2}))^{s}}\); \(\sum \limits _{n_{1}>0}\frac{n_{1}^{2}}{(1+\gamma \pi ^{2}n_{1}^{2})^{s}}\) and \(\sum \limits _{n_{2}>0}\frac{n_{2}^{2}}{(1+\gamma \pi ^{2}n_{2}^{2})^{s}}\) converge.

- Convergence of the series

  1. (1)

    Convergence of \(\sum \limits _{n_{1}>0,n_{2}>0}\frac{n_{1}^{2}+n_{2}^{2}}{(1+\gamma \pi ^{2}(n_{1}^{2}+n_{2}^{2}))^{s}}\)

    It is so easy to see that \( \sum \limits _{n_{1}\ge 1,n_{2}\ge 1}\frac{n_{1}^{2}+n_{2}^{2}}{(1+\gamma \pi ^{2}(n_{1}^{2}+n_{2}^{2}))^{s}} \) and \(\displaystyle \int _{1}^{+\infty }\int _{1}^{+\infty }\frac{x^{2}+y^{2}}{(1+\gamma \pi ^{2}(x^{2}+y^{2}))^{s}}dxdy\) are of the same type (either convergent or divergent), and the latter is of the same type as

    $$\begin{aligned} \displaystyle \int _{1}^{+\infty }\frac{r^{3}}{(1+\gamma \pi ^{2}r^{2})^{s}}dr \le \frac{1}{\gamma ^{s}\pi ^{2s}}\int _{1}^{+\infty }r^{3-2s}dr \end{aligned}$$

    and \(\int _{1}^{+\infty }r^{3-2s}dr<\infty \) iff \(\hbox {s}>2\).

    Thus \(\sum \limits _{n_{1}\ge 1,n_{2}\ge 1}\frac{n_{1}^{2}+n_{2}^{2}}{(1+\gamma \pi ^{2}(n_{1}^{2}+n_{2}^{2}))^{s}} \) converges iff \(\hbox {s}>2\).

  2. (2)

    By the same argument as previously \( \sum \limits _{n_{1}>0,n_{2}>0}\frac{1}{(1+\gamma \pi ^{2}(n_{1}^{2}+n_{2}^{2}))^{s}} \) converges for s>1.

  3. (3)

    By the comparison criterion the series \(\sum \limits _{n_{1}>0}\frac{1}{(1+\gamma \pi ^{2}n_{1}^{2})^{s}}\) and \(\sum \limits _{n_{2}>0}\frac{1}{(1+\gamma \pi ^{2}n_{2}^{2})^{s}}\) converge for \(s>\frac{1}{2}\).

  4. (4)

    By the comparison criterion the series \(\sum \limits _{n_{1}>0}\frac{n_{1}^{2}}{(1+\gamma \pi ^{2}n_{1}^{2})^{s}}\) and \(\sum \limits _{n_{2}>0}\frac{n_{2}^{2}}{(1+\gamma \pi ^{2}n_{2}^{2})^{s}}\) converge for \(s>\frac{3}{2}\) \(\square \)

Lemma 7.2

Under the assumption (H2), for any \(t\ge 0\), we have

$$\begin{aligned} \underset{x}{\sup }\Big \Vert \displaystyle \frac{K(x,.)}{\int _{{\mathbb {T}}^{2}}K(x',.)\mu _{t}(dx')}\Big \Vert ^{2}_{H^{3}}<\infty \end{aligned}$$

Proof

We have

$$\begin{aligned} \Big \Vert \displaystyle \frac{K(x,.)}{\int _{{\mathbb {T}}^{2}}K(x',.)\mu _{t}(dx')}\Big \Vert ^{2}_{H^{3}}&=\displaystyle \sum \limits _{|\eta |\le 3}\int _{{\mathbb {T}}^{2}}\Big \vert D^{\eta } \frac{K(x,y)}{\int _{{\mathbb {T}}^{2}}K(x',y)\mu _{t}(dx')}\Big |^{2} dy, \end{aligned}$$

Now if we let \(\displaystyle w_{t}(x,y)=\frac{K(x,y)}{\int _{{\mathbb {T}}^{2}}K(x',y)\mu _{t}(dx')}\), for any \(y\in {\mathbb {T}}^{2}\), one has

$$\begin{aligned}&\displaystyle \frac{\partial w_{t}}{\partial {y_{1}}}(x,y)=\frac{\frac{\partial K}{\partial {y{1}}}(x,y)}{\int _{{\mathbb {T}}_{2}}K(u,y)\mu _{t}(du)}-\frac{K(x,y)\int _{{\mathbb {T}}^{2}}\frac{\partial K}{\partial {y_{1}}}(u,y)\mu _{t}(du)}{(\int _{{\mathbb {T}}^{2}}K(u,y)\mu _{t}(du))^{2}}.\\&\displaystyle \frac{\partial ^{2} w_{t}}{\partial {y_{2}y_{1}}}(x,y)=\frac{\frac{\partial ^{2} K}{\partial {y_{2}y_{1}}}(x,y)}{\int _{{\mathbb {T}}^{2}}K(u,y)\mu _{t}(du)}-\frac{\frac{\partial K}{\partial {y_{1}}}(x,y)\int _{{\mathbb {T}}^{2}}\frac{\partial K}{\partial {y_{2}}}(u,y)\mu _{t}(du)}{(\int _{{\mathbb {T}}^{2}}K(u,y)\mu _{t}(du))^{2}}\\&\quad -\displaystyle \frac{\frac{\partial K}{\partial {y_{2}}}(x,y)\int _{{\mathbb {T}}^{2}}\frac{\partial K}{\partial {y_{1}}}(u,y)\mu _{t}(du)+K(x,y)\int _{{\mathbb {T}}^{2}}\frac{\partial ^{2} K}{\partial {y_{2}y_{1}}}(u,y)\mu _{t}(du)}{(\int _{{\mathbb {T}}^{2}}K(u,y)\mu _{t}(du))^{2}}\\&\quad +2\frac{K(x,y)\int _{{\mathbb {T}}^{2}}\frac{\partial K}{\partial {y_{1}}}(u,y)\mu _{t}(du)\int _{{\mathbb {T}}^{2}}\frac{\partial K}{\partial {y_{2}}}(u,y)\mu _{t}(du)}{(\int _{{\mathbb {T}}^{2}}K(u,y)\mu _{t}(du))^{3}}. \\&\displaystyle \frac{\partial ^{3} w_{t}}{\partial {y_{1}y_{2}y_{1}}}(x,y)=\frac{\frac{\partial ^{3} K}{\partial {y_{1}y_{2}y_{1}}}(x,y)}{\int _{{\mathbb {T}}^{2}}K(u,y)\mu _{t}(du)}-2\frac{\frac{\partial ^{2} K}{\partial {y_{2}y_{1}}}(x,y)\int _{{\mathbb {T}}^{2}}\frac{\partial K}{\partial {y_{1}}}(u,y)\mu _{t}(du)}{(\int _{{\mathbb {T}}_{2}}K(u,y)\mu _{t}(du))^{2}}\\&\quad -\displaystyle \frac{\frac{\partial ^{2} K}{\partial {y_{1}y_{1}}}(x,y)\int _{{\mathbb {T}}^{2}}\frac{\partial K}{\partial {y_{2}}}(u,y)\mu _{t}(du)+2\frac{\partial K(x,y)}{\partial y_{1}}\int _{{\mathbb {T}}^{2}}\frac{\partial ^{2} K}{\partial {y_{1}y_{2}}}(u,y)\mu _{t}(du)}{(\int _{{\mathbb {T}}^{2}}K(u,y)\mu _{t}(du))^{2}}\\&\quad +4\frac{\frac{\partial K}{\partial y_{1}}(x,y)\int _{{\mathbb {T}}^{2}}\frac{\partial K}{\partial {y_{2}}}(u,y)\mu _{t}(du)\int _{{\mathbb {T}}^{2}}\frac{\partial K}{\partial {y_{1}}}(z,y)\mu _{t}(du)}{(\int _{{\mathbb {T}}^{2}}K(u,y)\mu _{t}(du))^{3}}\\&\quad -\displaystyle \frac{\frac{\partial K}{\partial y_{2}}(x,y)\int _{{\mathbb {T}}^{2}}\frac{\partial ^{2} K}{\partial {y_{2}y_{1}}}(u,y)\mu _{t}(du)+K(x,y)\int _{{\mathbb {T}}^{2}}\frac{\partial ^{3} K}{\partial {y_{1}y_{2}y_{1}}}(u,y)\mu _{t}(du)}{(\int _{{\mathbb {T}}^{2}}K(u,y)\mu _{t}(du))^{2}}\\&\quad \displaystyle +2\frac{\int _{{\mathbb {T}}^{2}}\frac{\partial K}{\partial {y_{1}}}(u,y)\mu _{t}(du)\Big [\frac{\partial K}{\partial {y_{2}}}(x,y)\int _{{\mathbb {T}}_{2}}\frac{\partial K}{\partial {y_{1}}}(u,y)\mu _{t}(du)+2K(x,y)\int _{{\mathbb {T}}^{2}}\frac{\partial ^{2} K}{\partial {y_{2}y_{1}}}(u,y)\mu _{t}(du)\Big ]}{(\int _{{\mathbb {T}}^{2}}K(u,y)\mu _{t}(du))^{3}}\\&\quad +2\frac{K(x,y)\int _{{\mathbb {T}}^{2}}\frac{\partial ^{2} K}{\partial {y_{1}y_{1}}}(u,y)\mu _{t}(du)\int _{{\mathbb {T}}^{2}}\frac{\partial K}{\partial {y_{2}}}(u,y)\mu _{t}(du)}{(\int _{{\mathbb {T}}^{2}}K(u,y)\mu _{t}(du))^{3}}\\&\quad +6\frac{K(x,y)\Big (\int _{{\mathbb {T}}^{2}}\frac{\partial K}{\partial {y_{1}}}(u,y)\mu _{t}(du)\Big )^{2}\int _{{\mathbb {T}}^{2}}\frac{\partial K}{\partial {y_{2}}}(u,y)\mu _{t}(du)}{(\int _{{\mathbb {T}}^{2}}K(u,y)\mu _{t}(du))^{4}}. \end{aligned}$$

Furthermore from Lemma 5.1, \(\forall |\eta |\le 3\), \(x\in {\mathbb {T}}^{2}\), \(D^{\eta }K(x,y)\) is bounded by a constant independent of x. Thus since \(\forall y\in {\mathbb {T}}^{2}\), \(\int _{{\mathbb {T}}^{2}}K(u,y)\mu _{t}^{N}(du)=\int _{{\mathbb {T}}^{2}} K(u,y)f(t,u)(du)\) is lower bounded by a constant independent of y and \(f(t,.)\le \delta _{2}\) then we deduce from the above calculations that \(\displaystyle \sum \limits _{|\eta |\le 3}\int _{{\mathbb {T}}^{2}}\Big \vert D^{\eta } \frac{K(x,y)}{\int _{{\mathbb {T}}^{2}}K(x',y)\mu _{r}(dx')}\Big |^{2} dy\) is bounded by a constant independent of x. Hence the result.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bowong, S., Emakoua, A. & Pardoux, E. A spatial stochastic epidemic model: law of large numbers and central limit theorem. Stoch PDE: Anal Comp 11, 31–105 (2023). https://doi.org/10.1007/s40072-021-00221-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-021-00221-x

Keywords

Navigation