Skip to main content
Log in

Molecular-beam spectroscopy with an infinite interferometer: spectroscopic resolution and accuracy

  • Original Paper - Atoms, Molecules and Optics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

An interferometer with effectively infinite maximum optical path difference removes the dominant resolution limit for interferometric spectroscopy. We present mass-correlated rotational Raman spectra that represent the world’s highest resolution scanned interferometric data and discuss the current and expected future limitations in achievable spectroscopic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Schröter, K. Kosma, T. Schultz, Crasy: mass-or electron-correlated rotational alignment spectroscopy. Science 333, 1011 (2011)

    Article  ADS  Google Scholar 

  2. C. Schröter, J.C. Lee, T. Schultz, Mass-correlated rotational Raman spectra with high resolution, broad bandwidth, and absolute frequency accuracy. Proc. Natl. Acad. Sci. U.S.A. 115, 5072 (2018)

    Article  ADS  Google Scholar 

  3. H.-M. Frey, D. Kummli, S. Lobsiger, S. Leutwyler, High-resolution rotational Raman coherence spectroscopy with femtosecond pulses, in Handbook of High-resolution Spectroscopy, vol. 2, ed. by M. Quack, F. Merkt (Wiley, 2011), pp.1237–1265

    Google Scholar 

  4. C. Schroter, C.M. Choi, T. Schultz, Crasy: correlated rotational alignment spectroscopy reveals atomic scrambling in ionic states of butadiene. J. Phys. Chem. A 119, 1309 (2015)

    Article  Google Scholar 

  5. I. Heo, J.C. Lee, B.R. Özer, T. Schultz, Structure of benzene from mass-correlated rotational Raman spectroscopy. RSC Adv. 12, 21406 (2022)

    Article  ADS  Google Scholar 

  6. I. Heo, J.C. Lee, B.R. Özer, T. Schultz, Mass-correlated high-resolution spectra and the structure of benzene. J. Phys. Chem. Lett. 13, 8278 (2022)

    Article  Google Scholar 

  7. J.-U. Grabow, Fourier-transform microwave spectroscopy measurement and instrumentation, in Handbook of High-resolution Spectroscopy, vol. 2, ed. by M. Quack, F. Merkt (Wiley, 2011), pp.723–800

    Google Scholar 

  8. J.C. Lee, D.E. Lee, T. Schultz, High-resolution rotational Raman spectroscopy of benzene. Phys. Chem. Chem. Phys. 21, 2857 (2019)

    Article  Google Scholar 

  9. A. Weber, High-resolution Raman spectroscopy of gases, in Handbook of High-resolution Spectroscopy, vol. 2, ed. by M. Quack, F. Merkt (Wiley, 2011), pp.1153–1236

    Google Scholar 

  10. S. Albert, K.K. Albert, M. Quack, High-resolution Fourier transform infrared spectroscopy, in Handbook of High-resolution Spectroscopy, vol. 2, ed. by M. Quack, F. Merkt (Wiley, 2011), pp.965–1019

    Google Scholar 

  11. S. Albert, S. Bauerecker, E.S. Bekhtereva, I.B. Bolotova, H. Hollenstein, M. Quack, O.N. Ulenikov, High resolution ftir spectroscopy of fluoroform \({12CHF_3}\) and critical analysis of the infrared spectrum from 25 to 1500 cm-1. Mol. Phys. 116, 1091 (2018)

    Article  ADS  Google Scholar 

  12. B.R. Özer, I. Heo, J.C. Lee, C. Schröter, T. Schultz, De novo structure determination of butadiene by isotope-resolved rotational Raman spectroscopy. Phys. Chem. Chem. Phys. 22, 8933 (2020)

    Article  Google Scholar 

  13. J.C. Lee, B.R. Özer, T. Schultz, Crasy: correlated rotational alignment spectroscopy of pyridine. The rotational Raman spectrum of pyridine and asymmetric fragmentation of pyridine dimer cation. Phys. Chem. Chem. Phys. 23, 10621 (2021)

    Article  Google Scholar 

  14. H. Stapelfeldt, Laser aligned molecules: applications in physics and chemistry. Phys. Scr. T110, 132 (2004)

    Article  ADS  Google Scholar 

  15. C.E. Shannon, Communications in the presence of noise. In: Proc. IRE 37, 10 (1949)

  16. J.C. Hoch, M.W. Maciejewski, M. Mobli, A.D. Schuyler, A.S. Stern, Nonuniform sampling and maximum entropy reconstruction in multidimensional nmr. Acc. Chem. Res. 47, 708 (2014)

    Article  Google Scholar 

  17. I. Pelczer, S. Szalma, Multidimensional nmr and data processing. Chem. Rev. 91, 1507 (1991)

    Article  Google Scholar 

  18. S. Albert, K. Keppler, P. Lerch, M. Quack, A. Wokaun, Synchrotron-based highest resolution ftir spectroscopy of chlorobenzene. J. Mol. Spectrosc. 315, 92 (2015)

    Article  ADS  Google Scholar 

  19. S. Albert, K.K. Albert, P. Lerch, M. Quack, Synchrotron-based highest resolution Fourier transform infrared spectroscopy of naphthalene \({C_10H_8}\) and indole \({{C_{8}}{H_{7}}N}\) and its application to astrophysical problems. Faraday Discuss. 150, 71 (2011)

    Article  ADS  Google Scholar 

  20. S.T. Shipman, B.H. Pate, New techniques in microwave spectroscopy, in Handbook of High-resolution Spectroscopy, vol. 2, ed. by M. Quack, F. Merkt (Wiley, 2011), pp.801–828

    Google Scholar 

  21. T.W. Hänsch, Nobel lecture: passion for precision. Rev. Mod. Phys. 78, 1297 (2006)

    Article  ADS  Google Scholar 

  22. S.A. Diddams, V. Kerry, T. Udem, Optical frequency combs: Coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020)

    Article  Google Scholar 

  23. A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K.C. Cossel, T.C. Briles, J. Ye, Optical frequency comb spectroscopy. Faraday Discuss. 150, 23 (2011)

    Article  ADS  Google Scholar 

  24. A. Gambetta, M. Cassinerio, D. Gatti, P. Laporta, G. Galzerano, Scanning micro-resonator direct-comb absolute spectroscopy. Sci. Rep. 6, 35541 (2016)

    Article  ADS  Google Scholar 

  25. A.V. Muraviev, D. Konnov, K.L. Vodopyanov, Broadband high-resolution molecular spectroscopy with interleaved mid-infrared frequency combs. Sci. Rep. 10, 18700 (2020)

    Article  ADS  Google Scholar 

  26. The thermal expansion coefficient of aluminum at 25\(^\circ\)C is \(1.1\cdot 10^{-5} \frac{m}{mK}\) [36]

  27. D.E. Lide, Crc Handbook of Chemistry and Physics, 86th edn. (CRC Press, Boca Raton, 2005), pp. 12–196

    Google Scholar 

  28. J.A. Stone Jr., J.H. Zimmerman, Index of refraction of air (2001). https://www.nist.gov/publications/index-refraction-air. Accessed 21 Sep 2022

  29. P.E. Ciddor, Refractive index of air: new equations for the visible and near infrared. Appl. Opt. 35, 1566 (1996)

    Article  ADS  Google Scholar 

  30. Air index of refraction \(n\) based on pressure \(P\) (kPa), temperature \(T\) (\(^{\circ }\)C), and relative humidity \(RH\) (%): \(n= 1+7.86 \cdot 10^{-4} \cdot P / (273 + T) - 1.5 \cdot 10^{-11} \cdot RH (T^2 + 160)\)

  31. W. Riley, Handbook of Frequency Stability Analysis, National Institute of Standards and Technology Special Publication 1065 ( U (S. GOVERNMENT PRINTING OFFICE, Washington, 2008)

    Google Scholar 

  32. W. Demtroder, Doppler-free laser spectroscopy, in Handbook of High-resolution Spectroscopy, vol. 3, ed. by M. Quack, F. Merkt (Wiley, 2011), pp.1759–1779

    Google Scholar 

  33. J.C. Hoch, M.W. Maciejewski, B. Filipovic, Randomization improves sparse sampling in multidimensional nmr. J. Magn. Reson. (San Diego, Calif.: 1997) 193, 317 (2008)

    Article  Google Scholar 

  34. S.G. Hyberts, A.G. Milbradt, A.B. Wagner, H. Arthanari, G. Wagner, Application of iterative soft thresholding for fast reconstruction of nmr data non-uniformly sampled with multidimensional Poisson gap scheduling. J. Biomol. NMR 52, 315 (2012)

    Article  Google Scholar 

  35. Random sparse sampling is equivalent to the multiplication of a continuous time-domain trace with a binary [0,1] masking array, which masks out the unmeasured data points. The multiplication of traces in the time domain corresponds to a folding of their spectra in the Fourier-domain. A random binary array transforms into a flat noise spectrum and therefore merely adds noise without otherwise affecting the measured spectrum

  36. B. Iglewicz, D. Hoaglin, How to detect and handle outliers, in The ASQC Basic References in Quality Control: Statistical Techniques, vol. 16, ed. by E. Mykytka (American Society for Quality Control, 1993)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding support from the National Research Foundation of Korea, Grant NRF-2018R1D1A1A02042720 and Samsung Science and Technology Foundation, Grant SSTF-BA2001-08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schultz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schultz, T., Heo, I., Lee, J.C. et al. Molecular-beam spectroscopy with an infinite interferometer: spectroscopic resolution and accuracy. J. Korean Phys. Soc. 82, 919–927 (2023). https://doi.org/10.1007/s40042-023-00773-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00773-2

Keywords

Navigation