Skip to main content
Log in

Numerical semi-empirical modeling of lidar attenuation characteristics in atmosphere

  • Original Paper - Atoms, Molecules and Optics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Long-distance measurement of lidar is a critical problem in various fields, such as airborne lidar detection, surveying, and mapping. Attenuation characteristic is the key factor affecting the lidar detection capability. However, some long-distance measurement methods based on the widely used and validated theoretical models are usually inefficient, while others relying on empirical models have limited applications due to experimental difficulties. This study proposes a semi-empirical model of long-distance measurement based on the Beer–Lambert–Bouguer law adopting mathematical methods. Compared to the theoretical model, the calculation efficiency of the semi-empirical model we constructed has been improved by more than two orders of magnitude, and the accuracy can reach more than 98% of the theoretical model. Compared to other empirical models, its accuracy is closer to the theoretical model, and the computational efficiency is similar. It can be more effectively applied to the actual long-distance detection scene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Fahey, M. Islam, A. Gardi, R. Sabatini, Atmosphere 12, 7 (2021)

    Article  Google Scholar 

  2. V.A. Kovale, W.E. Eichinger, ELASTIC LIDIR Theory, Practice, and Analysis Methods (Wiley, New Jersey, 2004)

    Book  Google Scholar 

  3. F.C. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  4. K. Ahn, S.-H. Lee, L.-K. Park, H.-S. Yang, J. Korean Phys. Soc., 79(2021).

  5. H. Moosmuller, R.K. Chakrabarty, W.R. Arnott, J. Quant. Spectrosc. Radiativ. Transfer 110, 844–878 (2009)

    Article  ADS  Google Scholar 

  6. I.E. Gordon, L.S. Rothman, C. Hill, R.V. Kochanov, Y. Tan, P.F. Bernath, M. Bork et al., J. Quant. Spectrosc. Radiat. Transfer 203, 67 (2017)

    Article  ADS  Google Scholar 

  7. H. Cui, University of Chinese Academy of Science, (2019)

  8. L. Rayleigh, Philosophical Magazine 41 (1970)

  9. L. Rayleigh, Philos. Mag. 41(1958)

  10. G. Mie, Annalen der Physic 25, 3 (1908)

    Google Scholar 

  11. H.C. Van de Hulst, Twersky, Light Scattering by Small Particles (Wiley, New York, 1957)

    Google Scholar 

  12. C.E. Junge, Air Chemistry and Radioactivity (Academic Press, New York, 1963)

    Google Scholar 

  13. D. Deirmendjian, Electromagnetic Scattering on Spherical Poly-dispersion (American Elsevier, New York, 1969)

    Google Scholar 

  14. E.J. McCarney, Optics of Atmosphere: Scattering by Molecules and Particles (Wiley, New York, 1977)

    Google Scholar 

  15. K.I.M. Sangbum, K.I.M. Kihong, J. Korean Phys. Soc. 64, 8 (2014)

    Google Scholar 

  16. W.G. Alheadary, K.-H. Park, N. Alfaraj, Y. Guom, E. Stegenburgs, T.K. Ng, B.S. Oi, M.-S. Alouini, Opt. Express 26(6), 6614 (2018)

    Article  ADS  Google Scholar 

  17. I. I. Kim, B. McArthur, E. Korevaar, In Optical Wireless Communications III, E. J. Korevar, ed., Proc. SPIE, vol. 2001(2001)

  18. H. Vasseur, C.J. Gibbins, Radio Sci. 31, 1089–1097 (1996)

    Article  ADS  Google Scholar 

  19. P.W. Kruse, L.D. McQuistan, B. Richmond, Elements of Infrared Technology: Generation, Transmission, and Detection (Wiley, New York, 1962)

    Google Scholar 

  20. D. K. Kreid, Appl. Opt. 15(1974)

  21. M. Ljaz, Z. Ghassemlooy, J. Pesek, O. Fiser, H.L. Minnh, E. Bentley, J. Lightwave Technol. 31(11), 1720–1726 (2013)

    Article  ADS  Google Scholar 

  22. P. Qiu, G. Cui, Z. Qian, S. Zhu, X. Shan, Z. Zhao, X. Cui, P. Tian, Opt. Express 9(2021)

  23. M. Grabner, V. Kvicera, Opt. Express 19, 4 (2011)

    Article  Google Scholar 

  24. P. Lin, T. Wang, W. Ma, Q. Yang, Z. Liu, Opt. Express 28, 26 (2020)

    Google Scholar 

  25. Y. Li, M. Li, R. Duan, Z. Liu, T. Wang, W. Ma, Z. Tao, Y. Lou, H. Jiang, Appl. Opt. 61, 8 (2022)

    ADS  Google Scholar 

  26. F. Nadeem, E. Leitgeb, M.S. Awan, Netw. Digit. Signal Process. (2008).

  27. P. Chylek, J. Atmos. Sci. 35, 2 (1978)

    Google Scholar 

  28. R. Nebuloni, Appl. Opt. 44, 18 (2005)

    Article  Google Scholar 

  29. M. Damico, A. Leva, B. Micheli, IEEE Microwav. Wirel. Compon. Lett. 13(8), 305–307 (2003)

    Article  Google Scholar 

  30. S. Yu, M.S. Chen, L. Song, Guangxi Commun. Technol. 1(2008).

  31. Y. Dai, The Principle of Lidar in Chinese (National Defense Industry, Beijing, 2002)

    Google Scholar 

  32. R.G. Eldridge, Bull. Am. Meteorol. Soc. 50, 422–427 (1969)

    Article  ADS  Google Scholar 

  33. R. Wang, Xian China: Xi'an Univ. Electron. Sci. Technology, (2007)

  34. D. Li, H. Chen, Electron. Des. Eng. 19, 9 (2011)

    Google Scholar 

Download references

Acknowledgements

The authors thank Yikun Liu, Bobing Ye for helpful discussion and comment. This work has been funded by the Shenzhen Science and Technology Program Grant No. KQTD20190929172704911. We would like to thank Editage (www.editage.cn) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

1.1 Theoretical calculation of absorption and scattering coefficients

$$ k_{n} \left( h \right) = \int_{r1}^{r2} {C_{{{\text{abs}}}} F\left( r \right)dr} $$
(29)
$$ \beta_{n} \left( h \right) = \int_{r1}^{r2} {C_{{{\text{sca}}}} F\left( r \right)dr} , $$
(30)

where \(C_{abs}\) and \(C_{sca}\) are absorption and scattering cross-section; \(r\) is radius; \(F(r)\) defines aerosol size distribution;

For simplicity, extinction cross-section (\(C_{{{\text{ext}}}}\)) and aerosol effect coefficient (\(\eta_{n} \left( h \right)\)) are described as the sum of \(C_{{{\text{abs}}}}\) and \(C_{{{\text{sca}}}}\), \(k_{n} \left( h \right)\) and \(\beta_{{\text{n}}} \left( h \right)\), respectively.

$$ C_{{{\text{ext}}}} = C_{{{\text{abs}}}} + C_{{{\text{sca}}}} $$
(31)
$$ \eta_{n} \left( h \right) = k_{n} \left( h \right) + \beta_{n} \left( h \right) $$
(32)

Absorption and scattering cross-section can be further calculated as follows:

$$ C_{{{\text{abs}}}} = \frac{2\pi }{{l^{2} }}\sum\limits_{k = 1}^{\infty } {\left( {2k + 1} \right)\left[ {{\text{Re}} \left( {a_{k} + b_{k} } \right) - \left( {\left| {a_{k} } \right|^{2} + \left| {b_{k} } \right|^{2} } \right)} \right]} $$
(33)
$$ C_{{{\text{sca}}}} = \frac{2\pi }{{l^{2} }}\sum\limits_{k = 1}^{\infty } {\left( {2k + 1} \right)\left( {\left| {a_{k} } \right|^{2} + \left| {b_{k} } \right|^{2} } \right)} $$
(34)
$$ a_{k} = \frac{{\mu iR^{2} j_{k} (iRx)\left[ {xj_{k} (x)} \right]^{\prime } - u_{1} j_{k} (x)\left[ {iRxj_{k} (iRx)} \right]^{\prime } }}{{u_{1} iR^{2} j_{k} (iRx)\left[ {xh_{k}^{(1)} (x)} \right]^{\prime } - \mu_{1} h_{k}^{(1)} (x)\left[ {iRxj_{k} (iRx)} \right]^{\prime } }} $$
(35)
$$ b_{k} = \frac{{u_{1} iR^{2} j_{k} (iRx)\left[ {xj_{k} (x)} \right]^{\prime } - \mu j_{k} (x)\left[ {iRxj_{k} (iRx)} \right]^{\prime } }}{{u_{1} j_{k} (iRx)\left[ {xh_{k}^{(1)} (x)} \right]^{\prime } - \mu h_{k}^{(1)} (x)\left[ {iRxj_{k} (iRx)} \right]^{\prime } }} $$
(36)

which are related to the wave number \((l = 2\pi /\lambda )\), scattering coefficients (\(a_{k}\) and \(b_{k}\)) analyzed by Eqs. 3536, size parameter (\(x = lr\)), spherical Bessel functions (\(j_{k}\) and \(h_{k}^{(1)}\)), refractive index (\(iR\)), permeability (\(\mu\)) of sphere, and permeability (\(\mu_{1}\)) of surrounding the medium function of rate.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Z., Zhang, Y., Yang, Y. et al. Numerical semi-empirical modeling of lidar attenuation characteristics in atmosphere. J. Korean Phys. Soc. 81, 1231–1239 (2022). https://doi.org/10.1007/s40042-022-00635-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00635-3

Keywords

Navigation