Skip to main content
Log in

Generation of energetic ions with non-Maxwellian energy distribution from a double-layer target irradiated by an ultra-intense laser pulse

  • Original Paper - Fluids, Plasma and Phenomenology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Carbon ions and protons from a double-layer target, a copper foil coated with a polymer exhibit non-Maxwellian spectral shapes, when an ultra-intense laser pulse with a high temporal contrast ratio was focused on the metal side of the target. The spectral shapes, showing strong reduction of low-energy ions, a high-energy island, and a modulated structure, are different from a typical thermal distribution usually obtained from a pure metal target in the laser acceleration of ions. In the case of C\(^{6+}\) ion, a high-energy island with an energy spread of 0.5 MeV/u was observed, which is separated from the low-energy spectrum by 0.2 MeV/u. A modulation in the proton energy spectrum was observed, which leads to a secondary peak at 2.2 MeV/u in addition to a peak at a low energy of 1.5 MeV/u. The maximum energy obtained from the double-layer target at a laser intensity of 3 \(\times \) 10\(^{20}\) W/cm\(^2\) is 3.4 MeV/u for C\(^{6+}\) ions and 10 MeV/u for protons, which are higher than those obtained from a single metal foil by factors of 1.7 and 1.3, respectively. Such a spectral shape and energy enhancement could be accounted for by a bulk electrostatic field formed at the metal-polymer interface and multi-species interactions. These results show that the spectral shape of the ion beam can be tailored with an adequate structure of micrometer-thick target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R.A. Snavely, M.H. Key, S.P. Hatchett, T.E. Cowan, M. Roth, T.W. Phillips, M.A. Stoyer, E.A. Henry, T.C. Sangster, M.S. Singh, S.C. Wilks, A. MacKinnon, A. Offenberger, D.M. Pennington, K. Yasuike, A.B. Langdon, B.F. Lasinski, J. Johnson, M.D. Perry, E.M. Campbell, Phys. Rev. Lett. 85, 2945 (2000)

    Article  ADS  Google Scholar 

  2. K.W.D. Ledingham, P.R. Bolton, N. Shikazono, C.-M. Charlie Ma, Appl. Sci. 4, 402 (2014)

    Article  Google Scholar 

  3. J.C. Fernandez, B.J. Albright, F.N. Beg, M.E. Foord, B.M. Hegelich, J.J. Honrubia, M. Roth, R.B. Stephens, L. Yin, Nucl. Fusion 54, 054006 (2014)

    Article  ADS  Google Scholar 

  4. V. Malka, S. Fritzler, E. Lefebvre, E. d’Humieres, R. Ferrand, G. Grillon, C. Albaret, S. Meyroneinc, J.P. Chambaret, A. Antonetti, D. Hulin, Med. Phys. 31, 1587 (2004)

    Article  Google Scholar 

  5. A. Macchi, A Superintense Laser-Plasma Interaction Theory Primer (Springer, Berlin, 2013)

    Book  Google Scholar 

  6. S.C. Wilks, A.B. Langdon, T.E. Cowan, M. Roth, M. Singh, S. Hatchett, M.H. Key, D. Pennington, A. MacKinnon, R.A. Snavely, Phys. Plasmas 8, 542 (2001)

    Article  ADS  Google Scholar 

  7. B. Qiao, M. Zepf, M. Borghesi, B. Dromey, M. Geissler, A. Karmakar, P. Gibbon, Phys. Rev. Lett. 105, 155002 (2010)

    Article  ADS  Google Scholar 

  8. L.O. Silva, M. Marti, J.R. Davis, R.A. Fonseca, C. Ren, F.S. Tsung, W.B. Mori, Phys. Rev. Lett. 92, 015002 (2004)

    Article  ADS  Google Scholar 

  9. K. Lee, S.H. Park, Y.-H. Cha, J.Y. Lee, Y.W. Lee, K.-H. Yea, Y.U. Jeong, Phys. Rev. E 78, 056403 (2008)

    Article  ADS  Google Scholar 

  10. K. Lee, J.Y. Lee, S.H. Park, Y.-H. Cha, Y.W. Lee, K.N. Kim, Y.U. Jeong, Phys. Plasmas 18, 013101 (2011)

    Article  ADS  Google Scholar 

  11. I.J. Kim, K.H. Pae, I.W. Choi, C.-L. Lee, H.T. Kim, H. Singhal, J.H. Sung, S.K. Lee, H.W. Lee, P.V. Nickles, T.M. Jeong, C.M. Kim, C.H. Nam, Phys. Plasmas 23, 070701 (2016)

    Article  ADS  Google Scholar 

  12. A. Higginson, R.J. Gray, M. King, R.J. Dance, S.D.R. Williamson, N.M.H. Butler, R. Wilson, R. Capdessus, C. Armstrong, J.S. Green, S.J. Hawkes, P. Martin, W.Q. Wei, S.R. Mirfayzi, X.H. Yuan, S. Kar, M. Borghesi, R.J. Clarke, D. Neely, P. McKenna, Nat. Commun. 9, 724 (2018)

    Article  ADS  Google Scholar 

  13. S.V. Bulanov, V.S. Khoroshkov, Plasmas. Phys. Rep. 28, 453 (2002)

    Google Scholar 

  14. TZh. Esirkepov, S.V. Bulanov, K. Nishihara, T. Tajima, F. Pegoraro, V.S. Khoroshkov, K. Mima, H. Daido, Y. Kato, Y. Kitagawa, K. Nagai, S. Sakabe, Phys. Rev. Lett. 89, 175003 (2002)

    Article  ADS  Google Scholar 

  15. Hiroaki Kishimura, Hiroto Morishita, Yasuhisa H. Okano, Yasuaki Okano, Yoichiro Hironaka, Ken-ichi Kondo, Kazutaka G. Nakamura, Yuji Oishi, Koshichi Nemoto, Appl. Phys. Lett. 85, 2736 (2004)

    Article  ADS  Google Scholar 

  16. H. Schwoerer, S. Pfotenhauer, O. Jackel, K.-U. Amthor, B. Liesfeld, W. Ziegler, R. Sauerbrey, K.W.D. Ledingham, T. Esirkepov, Nature 439, 445 (2006)

    Article  ADS  Google Scholar 

  17. B.M. Hegelich, B.J. Albright, J. Cobble, K. Flippo, S. Letzring, M. Paffett, H. Ruhl, J. Schreiber, R.K. Schulz, J.C. Fernández, Nature 439, 441 (2006)

    Article  ADS  Google Scholar 

  18. H. Zhang, B.F. Shen, W.P. Wang, S.H. Zhai, S.S. Li, X.M. Lu, J.F. Li, R.J. Xu, X.L. Wang, X.Y. Liang, Y.X. Leng, R.X. Li, Z.Z. Xu, Phys. Rev. Lett. 119, 164801 (2017)

    Article  Google Scholar 

  19. K.N. Kim, K. Lee, M. Kumar, H.-N. Kim, S.H. Park, Y.U. Jeong, N. Vinokurov, Y.G. Kim, Phys. Plasmas 23, 033119 (2016)

    Article  ADS  Google Scholar 

  20. S. Ter-Avetisyan, M. Schnurer, S. Busch, E. Risse, P.V. Nickles, W. Sandner, Phys. Rev. Lett. 93, 155006 (2004)

    Article  ADS  Google Scholar 

  21. S. Ter-Avetisyan, M. Schnürer, P.V. Nickles, M. Kalashnikov, E. Risse, T. Sokollik, W. Sandner, A. Andreev, V. Tikhonchuk, Phys. Rev. Lett. 96, 145006 (2006)

    Article  ADS  Google Scholar 

  22. S. Ter-Avetisyan, B. Ramakrishna, R. Prasad, M. Borghesi, P.V. Nickles, S. Steinke, M. Schnürer, K.I. Popov, L. Ramunno, N.V. Zmitrenko, VYu. Bychenkov, Phys. Plasmas 19, 073112 (2012)

    Article  ADS  Google Scholar 

  23. Dan Haberberger, Sergei Tochitsky, Frederico Fiuza, Chao Gong, Ricardo A. Fonseca, Luis O. Silva, Warren B. Mori, Chan Joshi, Nat. Phys. 8, 95 (2012)

    Article  Google Scholar 

  24. P. Hilz, T.M. Ostermayr, A. Huebl, V. Bagnoud, B. Borm, M. Bussmann, M. Gallei, J. Gebhard, D. Haffa, J. Hartmann, T. Kluge, F.H. Lindner, P. Neumayr, C.G. Schaefer, U. Schramm, P.G. Thirolf, T.F. Rösch, F. Wagner, B. Zielbauer, J. Schreiber, Nat. Commun. 9, 423 (2018)

    Article  ADS  Google Scholar 

  25. L. Willingale, S.R. Nagel, A.G.R. Thomas, C. Bellei, R.J. Clarke, A.E. Dangor, R. Heathcote, M.C. Kaluza, C. Kamperidis, S. Kneip, K. Krushelnick, N. Lopes, S.P.D. Mangles, W. Nazarov, P.M. Nilson, Z. Najmudin, Phys. Rev. Lett. 102, 125002 (2009)

    Article  ADS  Google Scholar 

  26. A. Zigler, S. Eisenman, M. Botton, E. Nahum, E. Schleifer, A. Baspaly, I. Pomerantz, F. Abicht, J. Branzel, G. Priebe, S. Steinke, A. Andreev, M. Schnuerer, W. Sandner, D. Gordon, P. Sprangle, K.W.D. Ledingham, Phys. Rev. Lett. 110, 215004 (2013)

    Article  ADS  Google Scholar 

  27. D. Margarone, O. Klimo, I.J. Kim, J. Proku̇pek, J. Limpouch, T.M. Jeong, T. Mocek, J.Pšikal, H.T. Kim, J. Proška, K.H. Nam, L. Štolcová, I.W. Choi, S.K. Lee, J.H. Sung, T.J. Yu, G. Korn, Phys. Rev. Lett. 109, 234801 (2012)

  28. M. Passoni, A. Sgattoni, I. Prencipe, L. Fedeli, D. Dellasega, I. Cialfi, I.W. Choi, I.J. Kim, K.A. Janulewicz, H.W. Lee, J.H. Sung, S.K. Lee, C.H. Nam, Phys. Rev. Accel. Beams 19, 061301 (2016)

    Article  ADS  Google Scholar 

  29. J.H. Sung, J.W. Yoon, I.W. Choi, S.K. Lee, H.W. Lee, J.M. Yang, Y.G. Kim, C.H. Nam, J. Korean Phys. Soc. 77, 223 (2020)

    Article  ADS  Google Scholar 

  30. I.J. Kim, I.W. Choi, S.K. Lee, K.A. Janulewicz, J.H. Sung, T.J. Yu, H.T. Kim, H. Yun, T.M. Jeong, J. Lee, Appl. Phys. B 104, 81 (2011)

    Article  ADS  Google Scholar 

  31. T.W. Jeong, P.K. Singh, C. Scullion, H. Ahmed, K.F. Kakolee, P. Hadjisolomou, A. Alejo, S. Kar, M. Borghesi, S. Ter-Avetisyan, Rev. Sci. Instrum. 87, 083301 (2016)

    Article  ADS  Google Scholar 

  32. J. Fuchs, P. Antici, E. d’Humiéres, E. Lefebvre, M. Borghesi, E. Brambrink, C.A. Cecchetti, M. Kaluza, V. Malka, M. Manclossi, S. Meyroneinc, P. Mora, J. Schreiber, T. Toncian, H. Pepin, P. Audebert, Nat. Phys. 2, 48 (2006)

    Article  Google Scholar 

  33. H. Daido, M. Nishiuchi, A.S. Pirozhkov, Rep. Prog. Phys. 75, 056401 (2012)

    Article  ADS  Google Scholar 

  34. A.R. Bell, J.R. Davies, S. Guerin, H. Ruhl, Plasma Phys. Control Fusion 39, 653 (1997)

    Article  ADS  Google Scholar 

  35. M. Kumar, K. Lee, H.-N. Kim, W.-J. Ryu, S.H. Park, Y.U. Jeong, AIP Adv. 9, 045304 (2019)

    Article  ADS  Google Scholar 

  36. S. Kar, K.F. Kakolee, B. Qiao, A. Macchi, M. Cerchez, D. Doria, M. Geissler, P. McKenna, D. Neely, J. Osterholz, R. Prasad, K. Quinn, B. Ramakrishna, G. Sarri, O. Willi, X.Y. Yuan, M. Zepf, M. Borghesi, Phys. Rev. Lett. 109, 185006 (2012)

    Article  ADS  Google Scholar 

  37. S. Steinke, P. Hilz, M. Schnürer, G. Priebe, J. Bränzel, F. Abicht, D. Kiefer, C. Kreuzer, T. Ostermayr, J. Schreiber, A.A. Andreev, T.P. Yu, A. Pukhov, W. Sandner, Phys. Rev. STAB 16, 011303 (2013)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by an internal R&D program at KAERI funded by the Ministry of Science and ICT (MSIT) of the Republic of Korea (524420-22), by the Institute for Basic Science under the project code IBS-R012-D1, and by the Ultrashort Quantum Beam Facility (UQBF) operation program (140011) through APRI, GIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kitae Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HN., Lee, K., Kumar, M. et al. Generation of energetic ions with non-Maxwellian energy distribution from a double-layer target irradiated by an ultra-intense laser pulse. J. Korean Phys. Soc. 81, 391–396 (2022). https://doi.org/10.1007/s40042-022-00535-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00535-6

Keywords

Navigation