Skip to main content

Advertisement

Log in

Digital health: trends, opportunities and challenges in medical devices, pharma and bio-technology

  • Review
  • Published:
CSI Transactions on ICT Aims and scope Submit manuscript

Abstract

Digital health interventions refer to the use of digital technology and connected devices to improve health outcomes and healthcare delivery. This includes telemedicine, electronic health records, wearable devices, mobile health applications, and other forms of digital health technology. To this end, several research and developmental activities in various fields are gaining momentum. For instance, in the medical devices sector, several smart biomedical materials and medical devices that are digitally enabled are rapidly being developed and introduced into clinical settings. In the pharma and allied sectors, digital health-focused technologies are widely being used through various stages of drug development, viz. computer-aided drug design, computational modeling for predictive toxicology, and big data analytics for clinical trial management. In the biotechnology and bioengineering fields, investigations are rapidly growing focus on digital health, such as omics biology, synthetic biology, systems biology, big data and personalized medicine. Though digital health-focused innovations are expanding the horizons of health in diverse ways, here the development in the fields of medical devices, pharmaceutical technologies and biotech sectors, with emphasis on trends, opportunities and challenges are reviewed. A perspective on the use of digital health in the Indian context is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Digital Health Market Size, Share & Trends Report, 2030. https://www.grandviewresearch.com/industry-analysis/digital-health-market

  2. Digital Health—India. https://www.statista.com/outlook/dmo/digital-health/india

  3. Smartphone-based patient monitoring global market report 2022. https://www.businesswire.com/news/home/20230104005482/en/Smartphone-Based-Patient-Monitoring-Global-Market-Report-2022-Featuring-Leading-Players---Apple-Boston-Scientific-Cerner-Medtronic-and-Phillips-Healthcare---ResearchAndMarkets.com

  4. Dunn J, Runge R, Snyder M (2018) Wearables and the medical revolution. Pers Med 15:429–448. https://doi.org/10.2217/pme-2018-0044

    Article  Google Scholar 

  5. Venkatesan M, Mohan H, Ryan JR et al (2021) Virtual and augmented reality for biomedical applications. Cell Rep Med 2:100348. https://doi.org/10.1016/j.xcrm.2021.100348

    Article  Google Scholar 

  6. Vinolo Gil MJ, Gonzalez-Medina G, Lucena-Anton D et al (2021) Augmented reality in physical therapy: systematic review and meta-analysis. JMIR Serious Games 9:e30985. https://doi.org/10.2196/30985

    Article  Google Scholar 

  7. Chen M, Decary M (2020) Artificial intelligence in healthcare: an essential guide for health leaders. Healthc Manag Forum 33:10–18. https://doi.org/10.1177/0840470419873123

    Article  Google Scholar 

  8. Li L, Lou Z, Chen D et al (2018) Recent advances in flexible/stretchable supercapacitors for wearable electronics. Small 14:1702829. https://doi.org/10.1002/smll.201702829

    Article  Google Scholar 

  9. Choi S, Lee H, Ghaffari R et al (2016) Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv Mater 28:4203–4218. https://doi.org/10.1002/adma.201504150

    Article  Google Scholar 

  10. Gous N, Boeras DI, Cheng B et al (2018) The impact of digital technologies on point-of-care diagnostics in resource-limited settings. Expert Rev Mol Diagn 18:385–397. https://doi.org/10.1080/14737159.2018.1460205

    Article  Google Scholar 

  11. Salem M, Elkaseer A, El-Maddah IAM et al (2022) Non-invasive data acquisition and iot solution for human vital signs monitoring: applications. Limit Future Prospects Sens 22:6625. https://doi.org/10.3390/s22176625

    Article  Google Scholar 

  12. Belushkin A, Yesilkoy F, Altug H (2018) Nanoparticle-enhanced plasmonic biosensor for digital biomarker detection in a microarray. ACS Nano 12:4453–4461. https://doi.org/10.1021/acsnano.8b00519

    Article  Google Scholar 

  13. Kar A, Ahamad N, Dewani M et al (2022) Wearable and implantable devices for drug delivery: applications and challenges. Biomaterials 283:121435. https://doi.org/10.1016/j.biomaterials.2022.121435

    Article  Google Scholar 

  14. Long Y, Li J, Yang F et al (2021) Wearable and implantable electroceuticals for therapeutic electrostimulations. Adv Sci 8:2004023. https://doi.org/10.1002/advs.202004023

    Article  Google Scholar 

  15. Pilotto A, Rizzetti MC, Lombardi A et al (2021) Cerebellar rTMS in PSP: a double-blind sham-controlled study using mobile health technology. Cerebellum 20:662–666. https://doi.org/10.1007/s12311-021-01239-6

    Article  Google Scholar 

  16. Farahani M, Shafiee A (2021) Wound healing: from passive to smart dressings. Adv Healthc Mater 10:2100477. https://doi.org/10.1002/adhm.202100477

    Article  Google Scholar 

  17. Gore JC (2020) Artificial intelligence in medical imaging. Magn Reson Imaging 68:A1–A4. https://doi.org/10.1016/j.mri.2019.12.006

    Article  Google Scholar 

  18. Pugliese L, Marconi S, Negrello E et al (2018) The clinical use of 3D printing in surgery. Update Surg 70:381–388. https://doi.org/10.1007/s13304-018-0586-5

    Article  Google Scholar 

  19. Sun L, Wong Y (2019) Personalized three-dimensional printed models in congenital heart disease. J Clin Med 8:522. https://doi.org/10.3390/jcm8040522

    Article  Google Scholar 

  20. Sirajuddin A, Mirmomen SM, Kligerman SJ et al (2021) Ischemic heart disease: noninvasive imaging techniques and findings. Radiographics 41:E990–E1021. https://doi.org/10.1148/rg.2021200125

    Article  Google Scholar 

  21. Yang D, Martinez C, Visuña L et al (2021) Detection and analysis of COVID-19 in medical images using deep learning techniques. Sci Rep 11:19638. https://doi.org/10.1038/s41598-021-99015-3

    Article  Google Scholar 

  22. Shan R, Sarkar S, Martin SS (2019) Digital health technology and mobile devices for the management of diabetes mellitus: state of the art. Diabetologia 62:877–887. https://doi.org/10.1007/s00125-019-4864-7

    Article  Google Scholar 

  23. Ong DSY, Poljak M (2020) Smartphones as mobile microbiological laboratories. Clin Microbiol Infect 26:421–424. https://doi.org/10.1016/j.cmi.2019.09.026

    Article  Google Scholar 

  24. Coons SJ, Eremenco S, Lundy JJ et al (2015) Capturing patient-reported outcome (PRO) data electronically: the past, present, and promise of epro measurement in clinical trials. Patient Cent Outcomes Res 8:301–309. https://doi.org/10.1007/s40271-014-0090-z

    Article  Google Scholar 

  25. Dinh-Le C, Chuang R, Chokshi S, Mann D (2019) Wearable health technology and electronic health record integration: scoping review and future directions. JMIR MHealth UHealth 7:e12861. https://doi.org/10.2196/12861

    Article  Google Scholar 

  26. Shen Y-T, Chen L, Yue W-W, Xu H-X (2021) Digital technology-based telemedicine for the COVID-19 pandemic. Front Med 8:646506. https://doi.org/10.3389/fmed.2021.646506

    Article  Google Scholar 

  27. Guo C, Ashrafian H, Ghafur S et al (2020) Challenges for the evaluation of digital health solutions—a call for innovative evidence generation approaches. NPJ Digit Med 3:110. https://doi.org/10.1038/s41746-020-00314-2

    Article  Google Scholar 

  28. Kim J, Campbell AS, de Ávila BE-F, Wang J (2019) Wearable biosensors for healthcare monitoring. Nat Biotechnol 37:389–406. https://doi.org/10.1038/s41587-019-0045-y

    Article  Google Scholar 

  29. Koydemir HC, Ozcan A (2018) Wearable and implantable sensors for biomedical applications. Annu Rev Anal Chem 11:127–146. https://doi.org/10.1146/annurev-anchem-061417-125956

    Article  Google Scholar 

  30. Wang C, Xia K, Wang H et al (2019) Advanced carbon for flexible and wearable electronics. Adv Mater 31:1801072. https://doi.org/10.1002/adma.201801072

    Article  Google Scholar 

  31. Correia DM, Fernandes LC, Fernandes MM et al (2021) Ionic liquid-based materials for biomedical applications. Nanomaterials 11:2401. https://doi.org/10.3390/nano11092401

    Article  Google Scholar 

  32. Choi DY, Kim MH, Oh YS et al (2017) Highly stretchable, hysteresis-free ionic liquid-based strain sensor for precise human motion monitoring. ACS Appl Mater Interfaces 9:1770–1780. https://doi.org/10.1021/acsami.6b12415

    Article  Google Scholar 

  33. Yamada S, Toshiyoshi H (2020) Temperature sensor with a water-dissolvable ionic gel for ionic skin. ACS Appl Mater Interfaces 12:36449–36457. https://doi.org/10.1021/acsami.0c10229

    Article  Google Scholar 

  34. Zhang H, Lowe A, Kalra A, Yu Y (2021) A flexible strain sensor based on embedded ionic liquid. Sensors 21:5760. https://doi.org/10.3390/s21175760

    Article  Google Scholar 

  35. Yu Z, Wu P (2021) Water-resistant ionogel electrode with tailorable mechanical properties for aquatic ambulatory physiological signal monitoring. Adv Funct Mater 31:2107226. https://doi.org/10.1002/adfm.202107226

    Article  MathSciNet  Google Scholar 

  36. Esteves C, Palma SICJ, Costa HMA et al (2022) Tackling humidity with designer ionic liquid-based gas sensing soft materials. Adv Mater 34:2107205. https://doi.org/10.1002/adma.202107205

    Article  Google Scholar 

  37. Curto VF, Fay C, Coyle S et al (2012) Real-time sweat pH monitoring based on a wearable chemical barcode micro-fluidic platform incorporating ionic liquids. Sens Actuators B Chem 171–172:1327–1334. https://doi.org/10.1016/j.snb.2012.06.048

    Article  Google Scholar 

  38. Zandu SK, Chopra H, Singh I (2020) Ionic liquids for therapeutic and drug delivery applications. Curr Drug Res Rev 12:26–41. https://doi.org/10.2174/2589977511666191125103338

    Article  Google Scholar 

  39. Jian M, Wang C, Wang Q et al (2017) Advanced carbon materials for flexible and wearable sensors. Sci China Mater 60:1026–1062. https://doi.org/10.1007/s40843-017-9077-x

    Article  Google Scholar 

  40. Castro KPR, Colombo RNP, Iost RM et al (2023) Low-dimensionality carbon-based biosensors: the new era of emerging technologies in bioanalytical chemistry. Anal Bioanal Chem. https://doi.org/10.1007/s00216-023-04578-x

    Article  Google Scholar 

  41. Das S, Pal M (2020) Review—non-invasive monitoring of human health by exhaled breath analysis: a comprehensive review. J Electrochem Soc 167:037562. https://doi.org/10.1149/1945-7111/ab67a6

    Article  Google Scholar 

  42. Pang J, Bachmatiuk A, Yang F et al (2021) Applications of carbon nanotubes in the internet of things era. Nano-Micro Lett 13:191. https://doi.org/10.1007/s40820-021-00721-4

    Article  Google Scholar 

  43. Yi J, Xianyu Y (2022) Gold nanomaterials-implemented wearable sensors for healthcare applications. Adv Funct Mater 32:2113012. https://doi.org/10.1002/adfm.202113012

    Article  Google Scholar 

  44. Ali I, Chen L, Huang Y et al (2018) Humidity-responsive gold aerogel for real-time monitoring of human breath. Langmuir 34:4908–4913. https://doi.org/10.1021/acs.langmuir.8b00472

    Article  Google Scholar 

  45. Haine AT, Niidome T (2017) Gold nanorods as nanodevices for bioimaging, photothermal therapeutics, and drug delivery. Chem Pharm Bull (Tokyo) 65:625–628. https://doi.org/10.1248/cpb.c17-00102

    Article  Google Scholar 

  46. Jin H, Jin Q, Jian J (2018) Smart materials for wearable healthcare devices. In: Ortiz JH (ed) Wearable technologies. InTech

    Google Scholar 

  47. Choo-Smith L-P, Edwards HGM, Endtz HP et al (2002) Medical applications of Raman spectroscopy: from proof of principle to clinical implementation. Biopolymers 67:1–9. https://doi.org/10.1002/bip.10064

    Article  Google Scholar 

  48. Kothari R, Jones V, Mena D et al (2021) Raman spectroscopy and artificial intelligence to predict the Bayesian probability of breast cancer. Sci Rep 11:6482. https://doi.org/10.1038/s41598-021-85758-6

    Article  Google Scholar 

  49. Deore AB, Dhumane JR, Wagh R, Sonawane R (2019) The stages of drug discovery and development process. Asian J Pharm Res Dev 7:62–67. https://doi.org/10.22270/ajprd.v7i6.616

    Article  Google Scholar 

  50. Hughes J, Rees S, Kalindjian S, Philpott K (2011) Principles of early drug discovery: principles of early drug discovery. Br J Pharmacol 162:1239–1249. https://doi.org/10.1111/j.1476-5381.2010.01127.x

    Article  Google Scholar 

  51. Showell GA, Mills JS (2003) Chemistry challenges in lead optimization: silicon isosteres in drug discovery. Drug Discov Today 8:551–556. https://doi.org/10.1016/S1359-6446(03)02726-0

    Article  Google Scholar 

  52. Vemula D, Jayasurya P, Sushmitha V et al (2023) CADD, AI and ML in drug discovery: a comprehensive review. Eur J Pharm Sci 181:106324. https://doi.org/10.1016/j.ejps.2022.106324

    Article  Google Scholar 

  53. Kist R, Timmers LFSM, Caceres RA (2018) Searching for potential mTOR inhibitors: ligand-based drug design, docking and molecular dynamics studies of rapamycin binding site. J Mol Graph Model 80:251–263. https://doi.org/10.1016/j.jmgm.2017.12.015

    Article  Google Scholar 

  54. Aparoy P, Kumar Reddy K, Reddanna P (2012) Structure and ligand based drug design strategies in the development of novel 5- LOX inhibitors. Curr Med Chem 19:3763–3778. https://doi.org/10.2174/092986712801661112

    Article  Google Scholar 

  55. Kanakaveti V, Shanmugam A, Ramakrishnan C et al (2020) Computational approaches for identifying potential inhibitors on targeting protein interactions in drug discovery. In: Advances in protein chemistry and structural biology. Elsevier, pp 25–47

  56. Chikhale RV, Gupta VK, Eldesoky GE et al (2021) Identification of potential anti-TMPRSS2 natural products through homology modelling, virtual screening and molecular dynamics simulation studies. J Biomol Struct Dyn 39:6660–6675. https://doi.org/10.1080/07391102.2020.1798813

    Article  Google Scholar 

  57. Li K, Du Y, Li L, Wei D-Q (2019) Bioinformatics approaches for anti-cancer drug discovery. Curr Drug Targets 21:3–17. https://doi.org/10.2174/1389450120666190923162203

    Article  Google Scholar 

  58. Yu T, Cheng L, Yan X et al (2020) Systems biology approaches based discovery of a small molecule inhibitor targeting both c-Met/PARP-1 and inducing cell death in breast cancer. J Cancer 11:2656–2666. https://doi.org/10.7150/jca.40758

    Article  Google Scholar 

  59. Aldewachi H, Al-Zidan RN, Conner MT, Salman MM (2021) High-throughput screening platforms in the discovery of novel drugs for neurodegenerative diseases. Bioengineering 8:30. https://doi.org/10.3390/bioengineering8020030

    Article  Google Scholar 

  60. Ferdowsian HR, Beck N (2011) Ethical and scientific considerations regarding animal testing and research. PLoS ONE 6:e24059. https://doi.org/10.1371/journal.pone.0024059

    Article  Google Scholar 

  61. Achary PGR (2020) Applications of quantitative structure-activity relationships (QSAR) based virtual screening in drug design: a review. Mini-Rev Med Chem 20:1375–1388. https://doi.org/10.2174/1389557520666200429102334

    Article  Google Scholar 

  62. Staszak M, Staszak K, Wieszczycka K et al (2022) Machine learning in drug design: Use of artificial intelligence to explore the chemical structure–biological activity relationship. WIREs Comput Mol Sci. https://doi.org/10.1002/wcms.1568

    Article  Google Scholar 

  63. Raies AB, Bajic VB (2016) In silico toxicology: computational methods for the prediction of chemical toxicity: computational methods for the prediction of chemical toxicity. Wiley Interdiscip Rev Comput Mol Sci 6:147–172. https://doi.org/10.1002/wcms.1240

    Article  Google Scholar 

  64. Workman P (2003) How much gets there and what does it do?: The need for better pharmacokinetic and pharmacodynamic endpoints in contemporary drug discovery and development. Curr Pharm Des 9:891–902. https://doi.org/10.2174/1381612033455279

    Article  Google Scholar 

  65. Bouzom F, Ball K, Perdaems N, Walther B (2012) Physiologically based pharmacokinetic (PBPK) modelling tools: how to fit with our needs?: PBPK MODELLING TOOLS. Biopharm Drug Dispos 33:55–71. https://doi.org/10.1002/bdd.1767

    Article  Google Scholar 

  66. Mahan VL (2014) Clinical trial phases. Int J Clin Med 05:1374–1383. https://doi.org/10.4236/ijcm.2014.521175

    Article  Google Scholar 

  67. Gold M, Amatniek J, Carrillo MC et al (2018) Digital technologies as biomarkers, clinical outcomes assessment, and recruitment tools in Alzheimer’s disease clinical trials. Alzheimers Dement Transl Res Clin Interv 4:234–242. https://doi.org/10.1016/j.trci.2018.04.003

    Article  Google Scholar 

  68. Bennett AV, Jensen RE, Basch E (2012) Electronic patient-reported outcome systems in oncology clinical practice. CA Cancer J Clin 62:336–347. https://doi.org/10.3322/caac.21150

    Article  Google Scholar 

  69. Gong K, Yan Y-L, Li Y et al (2020) Mobile health applications for the management of primary hypertension: a multicenter, randomized, controlled trial. Medicine (Baltimore) 99:e19715. https://doi.org/10.1097/MD.0000000000019715

    Article  Google Scholar 

  70. Gordon S, Crager J, Howry C et al (2022) Best practice recommendations: user acceptance testing for systems designed to collect clinical outcome assessment data electronically. Ther Innov Regul Sci 56:442–453. https://doi.org/10.1007/s43441-021-00363-z

    Article  Google Scholar 

  71. Galsky MD, Shahin M, Jia R et al (2017) Telemedicine-enabled clinical trial of metformin in patients with prostate cancer. JCO Clin Cancer Inform. https://doi.org/10.1200/CCI.17.00044

    Article  Google Scholar 

  72. Beg S, Handa M, Shukla R et al (2022) Wearable smart devices in cancer diagnosis and remote clinical trial monitoring: transforming the healthcare applications. Drug Discov Today 27:103314. https://doi.org/10.1016/j.drudis.2022.06.014

    Article  Google Scholar 

  73. Patel VN, Kaelber DC (2014) Using aggregated, de-identified electronic health record data for multivariate pharmacosurveillance: a case study of azathioprine. J Biomed Inform 52:36–42. https://doi.org/10.1016/j.jbi.2013.10.009

    Article  Google Scholar 

  74. Needamangalam Balaji J, Prakash S, Park Y et al (2022) A scoping review on accentuating the pragmatism in the implication of mobile health (mHealth) technology for tuberculosis management in India. J Pers Med 12:1599. https://doi.org/10.3390/jpm12101599

    Article  Google Scholar 

  75. Holmén C, Piehl F, Hillert J et al (2011) A Swedish national post-marketing surveillance study of natalizumab treatment in multiple sclerosis. Mult Scler J 17:708–719. https://doi.org/10.1177/1352458510394701

    Article  Google Scholar 

  76. Antonijević Z, Beckman RA (2019) Platform trial designs in drug development: umbrella trials and basket trials. CRC Press, Boca Raton

    Google Scholar 

  77. Battaglini D, Al-Husinat L, Normando AG et al (2022) Personalized medicine using omics approaches in acute respiratory distress syndrome to identify biological phenotypes. Respir Res 23:318. https://doi.org/10.1186/s12931-022-02233-0

    Article  Google Scholar 

  78. Poirion OB, Jing Z, Chaudhary K et al (2021) DeepProg: an ensemble of deep-learning and machine-learning models for prognosis prediction using multi-omics data. Genome Med 13:112. https://doi.org/10.1186/s13073-021-00930-x

    Article  Google Scholar 

  79. Tran KA, Kondrashova O, Bradley A et al (2021) Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Med 13:152. https://doi.org/10.1186/s13073-021-00968-x

    Article  Google Scholar 

  80. Turek C, Wróbel S, Piwowar M (2020) OmicsON—integration of omics data with molecular networks and statistical procedures. PLoS ONE 15:e0235398. https://doi.org/10.1371/journal.pone.0235398

    Article  Google Scholar 

  81. Galeone C, Scelfo C, Bertolini F et al (2018) Precision medicine in targeted therapies for severe asthma: is there any place for “omics” technology? BioMed Res Int 2018:1–15. https://doi.org/10.1155/2018/4617565

    Article  Google Scholar 

  82. Big data analytics in healthcare market. https://www.factmr.com/report/369/big-data-analytics-healthcare-market

  83. Hemingway H, Asselbergs FW, Danesh J et al (2018) Big data from electronic health records for early and late translational cardiovascular research: challenges and potential. Eur Heart J 39:1481–1495. https://doi.org/10.1093/eurheartj/ehx487

    Article  Google Scholar 

  84. Wang L, Alexander CA (2020) Big data analytics in medical engineering and healthcare: methods, advances and challenges. J Med Eng Technol 44:267–283. https://doi.org/10.1080/03091902.2020.1769758

    Article  Google Scholar 

  85. Koppad S, B A, Gkoutos GV, Acharjee A, (2021) Cloud computing enabled big multi-omics data analytics. Bioinforma Biol Insights 15:1177932221. https://doi.org/10.1177/11779322211035921

    Article  Google Scholar 

  86. Morris MA, Saboury B, Burkett B et al (2018) Reinventing radiology: big data and the future of medical imaging. J Thorac Imaging 33:4–16. https://doi.org/10.1097/RTI.0000000000000311

    Article  Google Scholar 

  87. Ngiam KY, Khor IW (2019) Big data and machine learning algorithms for health-care delivery. Lancet Oncol 20:e262–e273. https://doi.org/10.1016/S1470-2045(19)30149-4

    Article  Google Scholar 

  88. Ho D, Quake SR, McCabe ERB et al (2020) Enabling technologies for personalized and precision medicine. Trends Biotechnol 38:497–518. https://doi.org/10.1016/j.tibtech.2019.12.021

    Article  Google Scholar 

  89. Sadler D, Okwuosa T, Teske AJ et al (2022) Cardio oncology: Digital innovations, precision medicine and health equity. Front Cardiovasc Med 9:951551. https://doi.org/10.3389/fcvm.2022.951551

    Article  Google Scholar 

  90. Vajawat B, Varshney P, Banerjee D (2021) Digital gaming interventions in psychiatry: evidence. Appl Chall Psych Res 295:113585. https://doi.org/10.1016/j.psychres.2020.113585

    Article  Google Scholar 

  91. Raijada D, Wac K, Greisen E et al (2021) Integration of personalized drug delivery systems into digital health. Adv Drug Deliv Rev 176:113857. https://doi.org/10.1016/j.addr.2021.113857

    Article  Google Scholar 

  92. Montanhesi PK, Coelho G, Curcio SAF, Poffo R (2022) Three-dimensional printing in minimally invasive cardiac surgery: optimizing surgical planning and education with life-like models. Braz J Cardiovasc Surg. https://doi.org/10.21470/1678-9741-2020-0409

    Article  Google Scholar 

  93. Jamróz W, Szafraniec J, Kurek M, Jachowicz R (2018) 3D printing in pharmaceutical and medical applications—recent achievements and challenges. Pharm Res 35:176. https://doi.org/10.1007/s11095-018-2454-x

    Article  Google Scholar 

  94. Bedford J, Farrar J, Ihekweazu C et al (2019) A new twenty-first century science for effective epidemic response. Nature 575:130–136. https://doi.org/10.1038/s41586-019-1717-y

    Article  Google Scholar 

  95. Canfell OJ, Davidson K, Woods L et al (2022) Precision public health for non-communicable diseases: an emerging strategic roadmap and multinational use cases. Front Public Health 10:256

    Article  Google Scholar 

  96. Cubillos-Ruiz A, Guo T, Sokolovska A et al (2021) Engineering living therapeutics with synthetic biology. Nat Rev Drug Discov 20:941–960. https://doi.org/10.1038/s41573-021-00285-3

    Article  Google Scholar 

  97. Davies JA (2016) Synthetic biology: rational pathway design for regenerative medicine. Gerontology 62:564–570. https://doi.org/10.1159/000440721

    Article  Google Scholar 

  98. Sridhar S, Ajo-Franklin CM, Masiello CA (2022) A framework for the systematic selection of biosensor chassis for environmental synthetic biology. ACS Synth Biol 11:2909–2916. https://doi.org/10.1021/acssynbio.2c00079

    Article  Google Scholar 

  99. Jain KK (2013) Synthetic biology and personalized medicine. Med Princ Pract 22:209–219. https://doi.org/10.1159/000341794

    Article  Google Scholar 

  100. McNerney MP, Doiron KE, Ng TL et al (2021) Theranostic cells: emerging clinical applications of synthetic biology. Nat Rev Genet 22:730–746. https://doi.org/10.1038/s41576-021-00383-3

    Article  Google Scholar 

  101. Zupanic A, Bernstein HC, Heiland I (2020) Systems biology: current status and challenges. Cell Mol Life Sci 77:379–380. https://doi.org/10.1007/s00018-019-03410-z

    Article  Google Scholar 

  102. Lopatkin AJ, Collins JJ (2020) Predictive biology: modelling, understanding and harnessing microbial complexity. Nat Rev Microbiol 18:507–520. https://doi.org/10.1038/s41579-020-0372-5

    Article  Google Scholar 

  103. Irmisch A, Bonilla X, Chevrier S et al (2021) The Tumor Profiler Study: integrated, multi-omic, functional tumor profiling for clinical decision support. Cancer Cell 39:288–293. https://doi.org/10.1016/j.ccell.2021.01.004

    Article  Google Scholar 

  104. McEwen SC, Merrill DA, Bramen J et al (2021) A systems-biology clinical trial of a personalized multimodal lifestyle intervention for early Alzheimer’s disease. Alzheimers Dement Transl Res Clin Interv. https://doi.org/10.1002/trc2.12191

    Article  Google Scholar 

  105. Wolstencroft K, Owen S, Krebs O et al (2015) SEEK: a systems biology data and model management platform. BMC Syst Biol 9:33. https://doi.org/10.1186/s12918-015-0174-y

    Article  Google Scholar 

  106. Kobeissy FH, Guingab-Cagmat JD, Razafsha M et al (2011) Leveraging biomarker platforms and systems biology for rehabilomics and biologics effectiveness research. PM&R 3:S139–S147. https://doi.org/10.1016/j.pmrj.2011.02.012

    Article  Google Scholar 

  107. Brown S-A (2015) Building SuperModels: emerging patient avatars for use in precision and systems medicine. Front Physiol. https://doi.org/10.3389/fphys.2015.00318

    Article  Google Scholar 

  108. Cummins N, Schuller BW (2020) Five crucial challenges in digital health. Front Digit Health 2:536203. https://doi.org/10.3389/fdgth.2020.536203

    Article  Google Scholar 

  109. Board of Governors in Supersession of the Medical Council of India (2020) Telemedicine practice guidelines-enabling registered medical practitioners to provide healthcare using telemedicine

  110. Latifi R, Doarn CR (2020) Perspective on COVID-19: finally, telemedicine at center stage. Telemed E-Health 26:1106–1109. https://doi.org/10.1089/tmj.2020.0132

    Article  Google Scholar 

  111. Gudi N, Lakiang T, Pattanshetty S et al (2021) Challenges and prospects in india’s digital health journey. Indian J Public Health 65:209. https://doi.org/10.4103/ijph.IJPH_1446_20

    Article  Google Scholar 

  112. Dash S, Aarthy R, Mohan V (2021) Telemedicine during COVID-19 in India—a new policy and its challenges. J Public Health Policy 42:501–509. https://doi.org/10.1057/s41271-021-00287-w

    Article  Google Scholar 

  113. Srivastava SK (2016) Adoption of electronic health records: a roadmap for India. Healthc Inform Res 22:261. https://doi.org/10.4258/hir.2016.22.4.261

    Article  Google Scholar 

  114. Madanian S, Parry DT, Airehrour D, Cherrington M (2019) mHealth and big-data integration: promises for healthcare system in India. BMJ Health Care Inform 26:e100071. https://doi.org/10.1136/bmjhci-2019-100071

    Article  Google Scholar 

  115. Al Dahdah M, Mishra RK (2023) Digital health for all: the turn to digitized healthcare in India. Soc Sci Med 319:114968. https://doi.org/10.1016/j.socscimed.2022.114968

    Article  Google Scholar 

  116. Katyayan A, Katyayan A, Mishra A (2022) Enhancing India’s health care during COVID era: role of artificial intelligence and algorithms. Indian J Otolaryngol Head Neck Surg 74:2712–2713. https://doi.org/10.1007/s12070-020-02101-7

    Article  Google Scholar 

  117. National Digital Health Mission. https://www.sanskritiias.com/current-affairs/national-digital-health-mission

  118. Soman B (2014) Participatory GIS in action, a public health initiative from Kerala, India. ISPRS Int Arch Photogramm Remote Sens Spat Inf Sci XL–8:233–237. https://doi.org/10.5194/isprsarchives-XL-8-233-2014

    Article  Google Scholar 

  119. Babu AN, Niehaus E, Shah S et al (2019) Smartphone geospatial apps for dengue control, prevention, prediction, and education: MOSapp, DISapp, and the mosquito perception index (MPI). Environ Monit Assess 191:393. https://doi.org/10.1007/s10661-019-7425-0

    Article  Google Scholar 

  120. Chaudhary S, Soman B (2022) Spatiotemporal analysis of environmental and physiographic factors related to malaria in Bareilly district, India. Osong Public Health Res Perspect 10:10. https://doi.org/10.24171/j.phrp.2021.0304

    Article  Google Scholar 

  121. Singh G, Mitra A, Soman B (2022) Development and use of a reproducible framework for spatiotemporal climatic risk assessment and its association with decadal trend of dengue in India. Indian J Community Med 47:50. https://doi.org/10.4103/ijcm.ijcm_862_21

    Article  Google Scholar 

  122. Valson JS, Soman B (2017) Spatiotemporal clustering of dengue cases in Thiruvananthapuram district. Kerala’ Indian J Public Health 61:74

    Google Scholar 

  123. Sarma PS, Sadanandan R, Thulaseedharan JV et al (2019) Prevalence of risk factors of non-communicable diseases in Kerala, India: results of a cross-sectional study. BMJ Open. https://doi.org/10.1136/bmjopen-2018-027880

    Article  Google Scholar 

  124. Ulahannan SK, Wilson A, Chhetri D et al (2022) Alarming level of severe acute malnutrition in Indian districts. BMJ Glob Health 7:e007798. https://doi.org/10.1136/bmjgh-2021-007798

    Article  Google Scholar 

  125. Valson JS, Kutty VR, Soman B, Jissa VT (2019) Spatial clusters of diabetes and physical inactivity: do neighborhood characteristics in high and low clusters differ? Asia Pac J Public Health. https://doi.org/10.1177/1010539519879322

    Article  Google Scholar 

  126. Mitra A, Soman B, Singh G (2021) An interactive dashboard for real-time analytics and monitoring of COVID-19 outbreak in india: a proof of Concept. arXiv:210809937Cs

  127. Mitra A, Soman B, Gaitonde R et al (2023) Data science approaches to public health: case studies using routine health data from India

  128. Singh G, Patrikar S, Sarma PS, Soman B (2020) Time-dependent dynamic transmission potential and instantaneous reproduction number of COVID-19 pandemic in India. medRxiv. https://doi.org/10.1101/2020.07.15.20154971

  129. Singh G, Srinivas G, Jyothi EK et al (2020) Containing the first outbreak of COVID-19 in a healthcare setting in India: the sree chitra experience. Indian J Public Health 64:240. https://doi.org/10.4103/ijph.IJPH_483_20

    Article  Google Scholar 

  130. Singh G, Soman B (2021) Spatiotemporal epidemiology and forecasting of dengue in the state of Punjab, India: study protocol. Spat Temp Epidemiol 39:100444. https://doi.org/10.1016/j.sste.2021.100444

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors listed have made an equal and substantial contribution to the work.

Corresponding author

Correspondence to Sanjay Behari.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasoju, N., Remya, N.S., Sasi, R. et al. Digital health: trends, opportunities and challenges in medical devices, pharma and bio-technology. CSIT 11, 11–30 (2023). https://doi.org/10.1007/s40012-023-00380-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40012-023-00380-3

Keywords