Skip to main content
Log in

Comparison of Shikimic Acid Content: A Precursor for Drug Against H5N1 from Various Plant Species of Western Ghats, India

  • Short Communication
  • Published:
National Academy Science Letters Aims and scope Submit manuscript

Abstract

Shikimic acid (SA) is a key precursor for synthesis of drug against H5N1 virus. The demand for this compound is met from plant resources, especially from the fruits of Chinese star anise (Ilichium vernum L.). Present study expounds understanding on distribution of SA in various plant species collected from Western Ghats using RP-UFLC analysis. The area under curve obtained after RP-UFLC run were used to comprehend on possible natural groupings and correlations. 14 out of 58 samples yielded SA in an excess of 1 mg/g and Mammea suriga (Buch.-Ham. ex Roxb.) Kosterm (29.34 mg/g) being the highest among all. Probably, this is the first report of M. suriga to be accounted for SA content. Higher yielding samples grouped together in hierarchical clustering analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Wang XQ, Guo YJ, Yang CS (2001) Determination of shikimic acid in fruit of Illiciaceae plants by HPLC with diode-array detection. Zhongguo Zhong Yao Za Zhi 26(7):447–449

    CAS  PubMed  Google Scholar 

  2. Hollander H, Amrhein N (1980) The site of the inhibition of the shikimiate pathway by glyphosate. Plant Physiol 66:823–829

    Article  CAS  Google Scholar 

  3. Harring T, Streibig JC, Husted S (1998) Accumulation of shikimic acid: a technique for screening glyphosate efficacy. J Agric Food Chem 46:4406–4412

    Article  CAS  Google Scholar 

  4. Frost JW, Frost KM, Knop DR (2003) Biocatalytic synthesis of Shikimic acid. US Patent 6,613,552 B1

  5. Kramer M, Bongaerts J, Bovenberg R, Kremer S, Muller S, Orf S et al (2003) Metabolic engineering for microbial production of shikimic acid. Metabolic Eng 5:277–283

    Article  CAS  Google Scholar 

  6. Shaner DL, Nadler-Hassar T, Henry WB, Koger CH (2005) A rapid in vivo shikimate accumulation assay with excised leaf discs. Weed Sci 53:769–774

    Article  CAS  Google Scholar 

  7. Edmonds M, Payne R (2005) Isolation of shikimic acid from star aniseed. J Chem Educ 82(4):599

    Article  Google Scholar 

  8. Raghavendra TR, Vaidyantahan P, Swathi HK, Ramesha BT, Ganeshaiah KN, Srikrishna A et al (2009) Prospecting for alternate sources of shikimic acid, a precursor of Tamiflu, a bird flu drug. Curr Sci 96(6):771–772

    CAS  Google Scholar 

  9. Escalante A et al (2010) Engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system. Micob Cell Fact 9:21. https://doi.org/10.1186/1475-2859-9-21

    Article  CAS  Google Scholar 

  10. Hulme AC (1956) Shikimic acid in apple fruits. Nature 178:991–992

    Article  ADS  CAS  Google Scholar 

  11. Hillis WE (1959) Shikimic acid in the leaves of Eucalyptus sieberiana F. Muell J Exp Bot 10(1):87–89

    Article  CAS  Google Scholar 

  12. Sui R (2008) Separation of shikimic acid from pine needles. Chem Eng Technol 31(3):469–473

    Article  CAS  Google Scholar 

  13. Yoshida S, Tazaki K, Minamikawa T (1975) Occurrence of shikimic and quinic acids in angiosperms. Phytochemistry 14(1):195–197

    Article  CAS  Google Scholar 

  14. Enrich Liza B, Scheuermann Margaret L, Mohadjer A et al (2008) Liquidambar styraciflua: a renewable source of shikimic acid. Tetrahedron Lett 49:2503–2505

    Article  Google Scholar 

  15. Simonart P, Wiaux A (1960) Production of shikimic acid by Penicillium griseofulvum Dierckx. Nature 186:78–79

    Article  ADS  CAS  Google Scholar 

  16. Ghosh S, Chisti Y, Banerjee UC (2012) Production of shikimic acid. Biotech Adv 30(6):1425–1431

    Article  CAS  Google Scholar 

  17. Lydon J, Duke OS (1988) Glyphosate induction of elevated levels of hydroxybenzoic acids in higher plants. J Agric Food Chem 36:813–818

    Article  CAS  Google Scholar 

  18. Amrhein N, Deus B, Gehrke P, Steinrucken HC (1980) The site of the inhibition of the shikimate pathway by glyphosate: II. Interference of glyphosate with chorismate formation in vivo and in vitro. Plant Physiol 66:830–834

    Article  CAS  Google Scholar 

  19. Berlin J, Witte L (1981) Effects of glyphosate on shikimic acid accumulation in tobacco cell cultures with low and high yields of cinnamoyl putrescines. Zeitschrift für Naturforschung C 36:210–214

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Director-in-Charge, RMRC, ICMR, Belagavi for providing the necessary facilities. Authors also thank Dr. Vinayak Upadhya for his extended help during collection. Thanks to Mr. Venkatesh and Mr. Bhoopal for laboratory assistance. This study was funded by Indian Council of Medical Research, New Delhi (Grant Number: 59/42/2012/online/BMS/TRM).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sandeep R. Pai or Harsha V. Hegde.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kshirsagr, P.R., Pai, S.R. & Hegde, H.V. Comparison of Shikimic Acid Content: A Precursor for Drug Against H5N1 from Various Plant Species of Western Ghats, India. Natl. Acad. Sci. Lett. 41, 399–402 (2018). https://doi.org/10.1007/s40009-018-0687-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40009-018-0687-1

Keywords

Navigation