Skip to main content

Advertisement

Log in

PEGylated polylactide (PLA) and poly (lactic-co-glycolic acid) (PLGA) copolymers for the design of drug delivery systems

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Background

PEGylated polylactide (PLA) and poly (lactic-co-glycolic acid) (PLGA) copolymers are biodegradable polyesters, widely employed in the last decades for the design of drug delivery systems such as polymeric hydrogels and nanocarriers (e.g. micelles and nanoparticles). The coupling with polyethylene glycol (PEG) offers some advantages with the respect to PLA and PLGA, including a higher hydrophilicity and a prolonged retention time for nanoparticulate systems, as well as the possibility of preparing thermoresponsive hydrogels. A large variety of pharmacologically active-compounds (small molecules, natural compounds or biomolecules such as proteins, peptides, oligonucleotides) has been formulated and delivered through PEGylated PLA or PLGA copolymers. Due to the high number of papers recently published about the use of these biodegradable copolymers in drug delivery, PEGylated PLA or PLGA copolymers are being still attractive. Their potential applications have been also broadened by the developing of ligand-functionalized copolymers, enabling an “active drug targeting” for nanoparticulate systems.

Area covered

The present review summarizes the recent advances in drug delivery systems based on PEGylated PLA or PLGA copolymers, focusing on self-assembled micelles and thermoresponsive hydrogels as well as nanoparticles. A particular consideration has been given to functionalized PEGylated PLA/PLGA nanoparticles for active drug delivery.

Expert opinion

Further advances in the design of PEGylated PLA/PLGA delivery systems will be beneficial for an improved drug release and targeting in the light of novel personalised therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Bonacucina.

Ethics declarations

Conflict of interest

All authors (D.R. Perinelli, M. Cespi, G. Bonacucina, G.F. Palmieri) declare that they have no conflict of interest.

Statement of human and animal rights

This article does not contain any studies with human and animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perinelli, D.R., Cespi, M., Bonacucina, G. et al. PEGylated polylactide (PLA) and poly (lactic-co-glycolic acid) (PLGA) copolymers for the design of drug delivery systems. J. Pharm. Investig. 49, 443–458 (2019). https://doi.org/10.1007/s40005-019-00442-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-019-00442-2

Keywords

Navigation