Skip to main content

Advertisement

Log in

Charge reduction: an efficient strategy to reduce toxicity and increase the transfection efficiency of high molecular weight polyethylenimine

  • Original Article
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

With high potency in treatment of various diseases, gene therapy is mainly hindered by lack of safe and efficient gene delivery vectors. The current study was aimed to develop an efficient non-viral vector with adequate cytotoxicity. To this end, alkylcarboxylate chains (6C, 10C, 16C) were exploited to ameliorate the characteristics of PEI 750 kDa. Briefly, alkylcarboxylate chains with three different lengths (6C, 10C, 16C) were chemically grafted to the primary amine groups of PEI 750 kDa in three percentages (10, 50, and 100%). After evaluating the physicochemical properties of prepared vectors including surface charge, size, buffering capacity, and DNA condensing, their transfection efficiency and cytotoxicity were investigated in Neuro2A cells. The polyplexes size were 158.9–264.5 nm and their zeta potentials were 14–30 mV, while their buffering capacity and DNA condensing were not significantly decreased. The highest transfection efficiency in term of C/P ratio was observed in PEI750-10C-68%, PEI750-10C-7%, and PEI750-6C-7% at C/P ratios of 2, 4, and 6, respectively. Altogether, the decanoylcarboxylate-modified PEI with medium grafting percentages showed promising results as gene delivery vector. To sum up, the modification of high molecular weight PEIs by alkylcarboxylate chains is an efficient approach for development of more efficient non-viral vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akinc A, Thomas M, Klibanov AM, Langer R (2005) Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med 7:657–663

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Le W, Wang Y, Li Z, Wang D, Ren L, Lin L, Cui S, Hu JJ, Hu Y et al (2016) Targeting negative surface charges of cancer cells by multifunctional nanoprobes. Theranostics 6:1887–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creusat G, Rinaldi A-S, Weiss E, Elbaghdadi R, Remy J-S, Mulherkar R, Zuber G (2010) Proton sponge trick for pH-sensitive disassembly of polyethylenimine-based siRNA delivery systems. Bioconj Chem 21:994–1002

    Article  CAS  Google Scholar 

  • Dammeijer F, Lievense LA, Veerman GM, Hoogsteden HC, Hegmans JP, Arends LR, Aerts JG (2016) The efficacy of tumor vaccines and cellular immunotherapies in non-small cell lung cancer: a systematic review and meta-analysis. J Clin Oncol 34(26):3204–3212

    Article  CAS  PubMed  Google Scholar 

  • Dehshahri A, Oskuee RK, Shier WT, Hatefi A, Ramezani M (2009) Gene transfer efficiency of high primary amine content, hydrophobic, alkyl-oligoamine derivatives of polyethylenimine. Biomaterials 30:4187–4194

    Article  CAS  PubMed  Google Scholar 

  • Dehshahri A, Oskuee RK, Ramezani M (2012a) Plasmid DNA delivery into hepatocytes using a multifunctional nanocarrier based on sugarconjugated polyethylenimine. Gene Ther Mol Biol 14:62–71

    Google Scholar 

  • Dehshahri A, Oskuee RK, Shier WT, Ramezani M (2012b) β-Galactosylated alkyl-oligoamine derivatives of polyethylenimine enhanced pDNA delivery into hepatic cells with reduced toxicity. Curr Nanosci 8:548–555

    Article  CAS  Google Scholar 

  • Dehshahri A, Sadeghpour H, Oskuee RK, Fadaei M, Sabahi Z, Alhashemi SH, Mohazabieh E (2014) Interleukin-12 plasmid DNA delivery using L-thyroxine-conjugated polyethylenimine nanocarriers. ‎J Nanopart Res 16:2423

    Article  CAS  Google Scholar 

  • Doody AM, Korley JN, Dang KP, Zawaneh PN, Putnam D (2006) Characterizing the structure/function parameter space of hydrocarbon-conjugated branched polyethylenimine for DNA delivery in vitro. J Control Release 116:227–237

    Article  CAS  PubMed  Google Scholar 

  • Erbacher P, Bettinger T, Brion E, Coll JL, Plank C, Behr JP, Remy JS (2004) Genuine DNA/polyethylenimine (PEI) complexes improve transfection properties and cell survival. J Drug Target 12:223–236

    Article  CAS  PubMed  Google Scholar 

  • Fioretti D, Iurescia S, Fazio VM, Rinaldi M (2010) DNA vaccines: developing new strategies against cancer. Biomed Res Int

  • Kazemi Oskuee R, Zakeri V, Gholami L, Malaekeh-Nikouei B (2015) Preparation, characterization and transfection efficiency of nanoparticles composed of alkane-modified polyallylamine. Nanomed J 2:111–120

    Google Scholar 

  • Komin A, Russell L, Hristova K, Searson P (2017) Peptide-based strategies for enhanced cell uptake, transcellular transport, and circulation: Mechanisms and challenges. Adv Drug Del Rev 110–111:52–64

    Article  CAS  Google Scholar 

  • Ma K, Hu M, Qi Y, Qiu L, Jin Y, Yu J, Li B (2009) Structure–transfection activity relationships with glucocorticoid–polyethyl-enimine conjugate nuclear gene delivery systems. Biomaterials 30:3780–3789

    Article  CAS  PubMed  Google Scholar 

  • Malaekeh-Nikouei B, Rezaee M, Gholami L, Behzad M, Mohajeri M, Kazemi Oskuee R (2017) Dexamethasone conjugated polyallylamine: Synthesis, characterization, and in vitro transfection and cytotoxicity. J Drug Deliv Sci Technol 40:172–179

    Article  CAS  Google Scholar 

  • Navarro SA, Carrillo E, Griñán-Lisón C, Martín A, Perán M, Marchal JA, Boulaiz H (2016) Cancer suicide gene therapy: a patent review. Expert Opin Ther Pat 26:1095–1104

    Article  CAS  PubMed  Google Scholar 

  • Nguyen J, Xie X, Neu M, Dumitrascu R, Reul R, Sitterberg J, Bakowsky U, Schermuly R, Fink L, Schmehl T et al (2008) Effects of cell-penetrating peptides and pegylation on transfection efficiency of polyethylenimine in mouse lungs. J Gene Med 10:1236–1246

    Article  CAS  PubMed  Google Scholar 

  • Nimesh S, Aggarwal A, Kumar P, Singh Y, Gupta KC, Chandra R (2007) Influence of acyl chain length on transfection mediated by acylated PEI nanoparticles. Int J Pharm 337:265–274

    Article  CAS  PubMed  Google Scholar 

  • Oskuee RK, Dehshahri A, Shier WT, Ramezani M (2009) Alkylcarboxylate grafting to polyethylenimine: a simple approach to producing a DNA nanocarrier with low toxicity. J Gene Med 11:921–932

    Article  CAS  PubMed  Google Scholar 

  • Oskuee RK, Philipp A, Dehshahri A, Wagner E, Ramezani M (2010) The impact of carboxyalkylation of branched polyethylenimine on effectiveness in small interfering RNA delivery. J Gene Med 12:729–738

    Article  CAS  PubMed  Google Scholar 

  • Pack DW, Hoffman AS, Pun S, Stayton PS (2005) Design and development of polymers for gene delivery. Nat Rev Drug Discovery 4:581–593

    Article  CAS  PubMed  Google Scholar 

  • Patnaik S, Gupta KC (2013) Novel polyethylenimine-derived nanoparticles for in vivo gene delivery. Expert Opin Drug Deliv 10:215–228

    Article  CAS  PubMed  Google Scholar 

  • Paul-Smith MC, Bell RV, Alton WE, Alton EW, Griesenbach U (2016) Gene therapy for cystic fibrosis: recent progress and current aims. Expert Opin Orphan Drugs Drugs 4:649–658

    Article  CAS  Google Scholar 

  • Penacho N, Simões S, de Lima MCP (2009) Polyethylenimine of various molecular weights as adjuvant for transfection mediated by cationic liposomes. Mol Membr Biol 26:249–263

    Article  CAS  PubMed  Google Scholar 

  • Pezzoli D, Tsekoura EK, Remant Bahadur KC, Candiani G, Mantovani D, Uludağ H (2017) Hydrophobe-substituted bPEI derivatives: boosting transfection on primary vascular cells. Sci China Mater 60:529–542

    Article  CAS  Google Scholar 

  • Rehman Z, Zuhorn IS, Hoekstra D (2013) How cationic lipids transfer nucleic acids into cells and across cellular membranes: recent advances. J Control Release 166:46–56

    Article  CAS  PubMed  Google Scholar 

  • Rezaee M, Oskuee RK, Nassirli H, Malaekeh-Nikouei B (2016) Progress in the development of lipopolyplexes as efficient non-viral gene delivery systems. J Control Release 236:1–14

    Article  CAS  PubMed  Google Scholar 

  • Sarisozen C, Pan J, Dutta I, Torchilin VP (2017) Polymers in the co-delivery of siRNA and anticancer drugs to treat multidrug-resistant tumors. J Pharm Investig 47:37–49

    Article  CAS  Google Scholar 

  • Shen ZL, Xia YQ, Yang QS, Tian WD, Chen K, Ma YQ (2017) Polymer–nucleic acid interactions. Top Curr Chem 375(2):44

    Article  CAS  Google Scholar 

  • Snyder SL, Sobocinski PZ (1975) An improved 2,4,6-trinitrobenzenesulfonic acid method for the determination of amines. Anal Biochem 64:284–288

    Article  CAS  PubMed  Google Scholar 

  • Teo PY, Yang C, Hedrick JL, Engler AC, Coady DJ, Ghaem-Maghami S, George AJ, Yang YY (2013) Hydrophobic modification of low molecular weight polyethylenimine for improved gene transfection. Biomaterials 34:7971–7979

    Article  CAS  PubMed  Google Scholar 

  • Thi EP, Lee AC, Geisbert JB, Ursic-Bedoya R, Agans KN, Robbins M, Deer DJ, Fenton KA, Kondratowicz AS, MacLachlan I (2016) Rescue of non-human primates from advanced Sudan ebolavirus infection with lipid encapsulated siRNA. Nat Microbiol 1:16142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas T, Tajmir-Riahi H, Thomas T (2016) Polyamine–DNA interactions and development of gene delivery vehicles. Amino Acids 48:2423–2431

    Article  CAS  PubMed  Google Scholar 

  • Verma IM, Somia N (1997) Gene therapy-promises, problems and prospects. Nature 389:239–242

    Article  CAS  PubMed  Google Scholar 

  • von Harpe A, Petersen H, Li Y, Kissel T (2000) Characterization of commercially available and synthesized polyethylenimines for gene delivery. J Controlled Release 69:309–322

    Article  Google Scholar 

  • Yang Z, Jiang Z, Cao Z, Zhang C, Gao D, Luo X, Zhang X, Luo H, Jiang Q, Liu J (2014) Multifunctional non-viral gene vectors with enhanced stability, improved cellular and nuclear uptake capability, and increased transfection efficiency. Nanoscale 6:10193–10206

    Article  CAS  PubMed  Google Scholar 

  • Zheng M, Zhong YA, Meng FH, Peng R, Zhong ZY (2011) Lipoic acid modified low molecular weight polyethylenimine mediates nontoxic and highly potent in vitro gene transfection. Mol Pharm 8:2434–2443

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Mashhad University of Medical Sciences (MUMS), Mashhad, Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Ramezani or Reza Kazemi Oskuee.

Ethics declarations

Conflict of interest

All authors (M. Rezaee, L. Gholami, M. Seddighi Gildeh, M. Ramezani and R. Kazemi Oskuee) declare that they have no conflict of interest.

Research involving human and animal participants

This article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaee, M., Gholami, L., Gildeh, M.S. et al. Charge reduction: an efficient strategy to reduce toxicity and increase the transfection efficiency of high molecular weight polyethylenimine. J. Pharm. Investig. 49, 105–114 (2019). https://doi.org/10.1007/s40005-018-0388-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-018-0388-2

Keywords

Navigation