Skip to main content

Advertisement

Log in

Lyotropic liquid crystal systems in drug delivery: a review

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Lamellar, cubic and hexagonal mesophases are some of the most common lyotropic liquid crystal systems, and have attracted much research attention because of their distinctive structures and physicochemical properties. Polar lipids and surfactants exhibit a range of phase behavior in an aqueous environment, depending on the composition of the lipids and surfactants. These characteristics have been investigated for a variety of applications in drug delivery, and lyotropic liquid crystal systems have potential as drug carriers for small molecules, peptides, and proteins. In this article we provide an overview of recent advances in the state of the art, including methods of preparation and applications in drug delivery. The scope and limitations of lyotropic liquid crystals for drug delivery are discussed, and future research perspectives are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aeinleng N, Songkro S, Noipha K, Srichana T (2012) Physicochemical performances of indomethacin in cholesteryl cetyl carbonate liquid crystal as a transdermal dosage. AAPS PharmSciTech 13:513–521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ahuja M, Dhake AS, Sharma SK, Majumdar DK (2008) Topical ocular delivery of NSAIDs. AAPS J 10:229–241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Amar-Yuli I, Wachtel E, Shoshan EB, Danino D, Aserin A, Garti N (2007) Hexosome and hexagonal phases mediated by hydration and polymeric stabilizer. Langmuir 23:3637–3645

    Article  CAS  PubMed  Google Scholar 

  • Amar-Yuli I, Libster D, Aserin A, Garti N (2009) Solubilization of food bioactives within lyotropic liquid crystalline mesophases. Curr Opin Colloid Interface Sci 14:21–32

    Article  CAS  Google Scholar 

  • Angelov B, Angelova A, Vainio U, Garamus VM, Lesieur S, Willumeit R, Couvreur P (2009) Long-living intermediates during a lamellar to a diamond-cubic lipid phase transition: a small-angle X-ray scattering investigation. Langmuir 25:3734–3742

    Article  CAS  PubMed  Google Scholar 

  • Bitan-Cherbakovsky L, Libster D, Aserin A, Garti N (2011) Complex dendrimer–lyotropic liquid crystalline systems: structural behavior and interactions. J Phys Chem B 115:11984–11992

    Article  CAS  PubMed  Google Scholar 

  • Boyd BJ, Whittaker DV, Khoo SM, Davey G (2006a) Hexosomes formed from glycerate surfactants-formulation as a colloidal carrier for irinotecan. Int J Pharm 318:154–162

    Article  CAS  PubMed  Google Scholar 

  • Boyd BJ, Whittaker DV, Khoo S-M, Davey G (2006b) Lyotropic liquid crystalline phases formed from glycerate surfactants as sustained release drug delivery systems. Int J Pharm 309:218–226

    Article  CAS  PubMed  Google Scholar 

  • Boyd BJ, Khoo SM, Whittaker DV, Davey G, Porter CJ (2007) A lipid-based liquid crystalline matrix that provides sustained release and enhanced oral bioavailability for a model poorly water soluble drug in rats. Int J Pharm 340:52–60

    Article  CAS  PubMed  Google Scholar 

  • Boyd BJ, Dong Y-D, Rades T (2009) Nonlamellar liquid crystalline nanostructured particles: advances in materials and structure determination. J Liposome Res 19:12–28

    Article  CAS  PubMed  Google Scholar 

  • Cervin C, Vandoolaeghe P, Nistor C, Tiberg F, Johnsson M (2009) A combined in vitro and in vivo study on the interactions between somatostatin and lipid-based liquid crystalline drug carriers and bilayers. Eur J Pharm Sci 36:377–385

    Article  CAS  PubMed  Google Scholar 

  • Charman WN, Rogge MC, Boddy AW, Berger BM (1993) Effect of food and a monoglyceride emulsion formulation on danazol bioavailability. J Clin Pharmacol 33:381–386

    Article  CAS  PubMed  Google Scholar 

  • Chong JY, Mulet X, Waddington LJ, Boyd BJ, Drummond CJ (2012) High-throughput discovery of novel steric stabilizers for cubic lyotropic liquid crystal nanoparticle dispersions. Langmuir 28:9223–9232

    Article  CAS  PubMed  Google Scholar 

  • Chung H, Kim JS, Um J, Kwon I, Jeong S (2002) Self-assembled “nanocubicle” as a carrier for peroral insulin delivery. Diabetologia 45:448–451

    Article  CAS  PubMed  Google Scholar 

  • Cohen-Avrahami M, Libster D, Aserin A, Garti N (2012) Penetratin-induced transdermal delivery from HII mesophases of sodium diclofenac. J Control Release 159:419–428

    Article  CAS  PubMed  Google Scholar 

  • Dalm V, Hofland L, Lamberts S (2008) Future clinical prospects in somatostatin/cortistatin/somatostatin receptor field. Mol Cell Endocrinol 286:262–277

    Article  CAS  PubMed  Google Scholar 

  • Dima L, Abraham A, Ellen W, Gil S, Garti N (2007) An HII liquid crystal-based delivery system for cyclosporin A: physical characterization. J Colloid Interface Sci 308:514–524

    Article  Google Scholar 

  • Dong YD, Larson I, Barnes TJ, Prestidge CA, Boyd BJ (2011) Adsorption of nonlamellar nanostructured liquid-crystalline particles to biorelevant surfaces for improved delivery of bioactive compounds. ACS Appl Mater Interfaces 3:1771–1780

    Article  CAS  PubMed  Google Scholar 

  • Dong YD, Larson I, Barnes TJ, Prestidge CA, Allen S, Chen X, Roberts CJ, Boyd BJ (2012) Understanding the interfacial properties of nanostructured liquid crystalline materials for surface-specific delivery applications. Langmuir 28:13485–13495

    Article  CAS  PubMed  Google Scholar 

  • Drummond CJ, Fong C (1999) Surfactant self-assembly objects as novel drug delivery vehicles. Curr Opin Colloid Interface Sci 4:449–456

    Article  CAS  Google Scholar 

  • Engström S, Engström L (1992) Phase behaviour of the lidocaine-monoolein-water system. Int J Pharm 79:113–122

    Article  Google Scholar 

  • Engström S, Lindahl L, Wallin R, Engblom J (1992) A study of polar lipid drug systems undergoing a thermoreversible lamellar-to-cubic phase transition. Int J Pharm 86:137–145

    Article  Google Scholar 

  • Esposito E, Cortesi R, Drechsler M, Paccamiccio L, Mariani P, Contado C, Stellin E, Menegatti E, Bonina F, Puglia C (2005) Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm Res 22:2163–2173

    Article  CAS  PubMed  Google Scholar 

  • Fong WK, Hanley T, Boyd BJ (2009) Stimuli responsive liquid crystals provide ‘on-demand’ drug delivery in vitro and in vivo. J Control Release 135:218–226

    Article  CAS  PubMed  Google Scholar 

  • Fong WK, Hanley TL, Thierry B, Kirby N, Waddington LJ, Boyd BJ (2012) Controlling the nanostructure of gold nanorod-lyotropic liquid-crystalline hybrid materials using near-infrared laser irradiation. Langmuir 28:14450–14460

    Article  CAS  PubMed  Google Scholar 

  • Fraser SJ, Mulet X, Hawley A, Separovic F, Polyzos A (2013) Controlling nanostructure and lattice parameter of the inverse bicontinuous cubic phases in functionalised phytantriol dispersions. J Colloid Interf Sci 408:117–124

    Article  CAS  Google Scholar 

  • Gan L, Han S, Shen J, Zhu J, Zhu C, Zhang X, Gan Y (2010) Self-assembled liquid crystalline nanoparticles as a novel ophthalmic delivery system for dexamethasone: improving preocular retention and ocular bioavailability. Int J Pharm 396:179–187

    Article  CAS  PubMed  Google Scholar 

  • Garg G, Saraf S, Saraf S (2007) Cubosomes: an overview. Biol Pharm Bull 30:350–353

    Article  CAS  PubMed  Google Scholar 

  • Garti N, Hoshen G, Aserin A (2012) Lipolysis and structure controlled drug release from reversed hexagonal mesophase. Colloid Surf B 94:36–43

    Article  CAS  Google Scholar 

  • Geraghty PB, Attwood D, Collett JH, Dandiker Y (1996) The in vitro release of some antimuscarinic drugs from monoolein/water lyotropic liquid crystalline gels. Pharm Res 13:1265–1271

    Article  CAS  PubMed  Google Scholar 

  • Gong X, Moghaddam MJ, Sagnella SM, Conn CE, Danon SJ, Waddington LJ, Drummond CJ (2011) Lyotropic liquid crystalline self-assembly material behavior and nanoparticulate dispersions of a phytanyl pro-drug analogue of capecitabine-A chemotherapy agent. ACS Appl Mater Interfaces 3:1552–1561

    Article  CAS  PubMed  Google Scholar 

  • Guillot S, Salentinig S, Chemelli A, Sagalowicz L, Leser ME, Glatter O (2010) Influence of the stabilizer concentration on the internal liquid crystalline order and the size of oil-loaded monolinolein-based dispersions. Langmuir 26:6222–6229

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Wang J, Cao F, Lee RJ, Zhai G (2010) Lyotropic liquid crystal systems in drug delivery. Drug Discov Today 15:1032–1040

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson J, Ljusberg-Wahren H, Almgren M, Larsson K (1997) Submicron particles of reversed lipid phases in water stabilized by a nonionic amphiphilic polymer. Langmuir 13:6964–6971

    Article  CAS  Google Scholar 

  • Han S, Shen JQ, Gan Y, Geng HM, Zhang XX, Zhu CL, Gan L (2010) Novel vehicle based on cubosomes for ophthalmic delivery of flurbiprofen with low irritancy and high bioavailability. Acta Pharmacol Sin 31:990–998

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hirlekar R, Jain S, Patel M, Garse H, Kadam V (2010) Hexosomes: a novel drug delivery system. Curr Drug Deliv 7:28–35

    Article  CAS  PubMed  Google Scholar 

  • Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2(72):1525–1568

    Article  Google Scholar 

  • Jain V, Swarnakar NK, Mishra PR, Verma A, Kaul A, Mishra AK, Jain NK (2012) Paclitaxel loaded PEGylated glyceryl monooleate based nanoparticulate carriers in chemotherapy. Biomaterials 33:7206–7220

    Article  CAS  PubMed  Google Scholar 

  • Jin X, Zhang ZH, Li SL, Sun E, Tan XB, Song J, Jia XB (2013) A nanostructured liquid crystalline formulation of 20 (S)-protopanaxadiol with improved oral absorption. Fitoterapia 84:64–71

    Article  CAS  PubMed  Google Scholar 

  • Kaasgaard T, Drummond CJ (2006) Ordered 2-D and 3-D nanostructured amphiphile self-assembly materials stable in excess solvent. Phys Chem Chem Phys 8:4957–4975

    Article  CAS  PubMed  Google Scholar 

  • Ki MH, Lim JL, Ko JY, Park SH, Kim JE, Cho HJ, Park ES, Kim DD (2014) A new injectable liquid crystal system for one month delivery of leuprolide. J Control Release 185:62–70

    Article  CAS  PubMed  Google Scholar 

  • Kuntsche J, Horst JC, Bunjes H (2011) Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems. Int J Pharm 417:120–137

    Article  CAS  PubMed  Google Scholar 

  • Lai J, Chen J, Lu Y, Sun J, Hu F, Yin Z, Wu W (2009) Glyceryl monooleate/poloxamer 407 cubic nanoparticles as oral drug delivery systems. I. In vitro evaluation and enhanced oral bioavailability of the poorly water-soluble drug simvastatin. AAPS PharmSciTech 10:960–966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lapteva M, Kalia YN (2013) Microstructured bicontinuous phase formulations: their characterization and application in dermal and transdermal drug delivery. Expert Opin Drug Deliv 10:1043–1059

    Article  CAS  PubMed  Google Scholar 

  • Larsson K (1999) Colloidal dispersions of ordered lipid-water phases. J Dispers Sci Technol 20:27–34

    Article  CAS  Google Scholar 

  • Lee KW, Nguyen TH, Hanley T, Boyd BJ (2009) Nanostructure of liquid crystalline matrix determines in vitro sustained release and in vivo oral absorption kinetics for hydrophilic model drugs. Int J Pharm 365:190–199

    Article  CAS  PubMed  Google Scholar 

  • Leesajakul W, Nakano M, Taniguchi A, Handa T (2004) Interaction of cubosomes with plasma components resulting in the destabilization of cubosomes in plasma. Colloid Surf B 34:253–258

    Article  CAS  Google Scholar 

  • Libster D, Aserin A, Garti N (2011) Interactions of biomacromolecules with reverse hexagonal liquid crystals: drug delivery and crystallization applications. J Colloid Interf Sci 356:375–386

    Article  CAS  Google Scholar 

  • Lopes LB, Ferreira DA, De Paula D, Garcia MTJ, Thomazini JA, Fantini MC, Bentley MVL (2006) Reverse hexagonal phase nanodispersion of monoolein and oleic acid for topical delivery of peptides: in vitro and in vivo skin penetration of cyclosporin A. Pharm Res 23:1332–1342

    Article  CAS  PubMed  Google Scholar 

  • Lynch ML, Ofori-Boateng A, Hippe A, Kochvar K, Spicer PT (2003) Enhanced loading of water-soluble actives into bicontinuous cubic phase liquid crystals using cationic surfactants. J Colloid Interf Sci 260:404–413

    Article  CAS  Google Scholar 

  • Malmsten M (2007) Phase transformations in self-assembly systems for drug delivery applications. J Dispers Sci Technol 28:63–72

    Article  CAS  Google Scholar 

  • Negrini R, Mezzenga R (2011) pH-responsive lyotropic liquid crystals for controlled drug delivery. Langmuir 27:5296–5303

    Article  CAS  PubMed  Google Scholar 

  • Negrini R, Mezzenga R (2012) Diffusion, molecular separation, and drug delivery from lipid mesophases with tunable water channels. Langmuir 28:16455–16462

    Article  CAS  PubMed  Google Scholar 

  • Nemanic MK, Elias PM (1980) In situ precipitation: a novel cytochemical technique for visualization of permeability pathways in mammalian stratum corneum. J Histochem Cytochem 28:573–578

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TH, Hanley T, Porter CJ, Boyd BJ (2011) Nanostructured liquid crystalline particles provide long duration sustained-release effect for a poorly water soluble drug after oral administration. J Control Release 153:180–186

    Article  CAS  PubMed  Google Scholar 

  • Nielsen LS, Schubert L, Hansen J (1998) Bioadhesive drug delivery systems: I. Characterisation of mucoadhesive properties of systems based on glyceryl mono-oleate and glyceryl monolinoleate. Eur J Pharm Sci 6:231–239

    Article  CAS  PubMed  Google Scholar 

  • Norling T, Lading P, Engstrom S, Larsson K, Krog N, Nissen SS (1992) Formulation of a drug delivery system based on a mixture of monoglycerides and triglycerides for use in the treatment of periodontal disease. J Clin Periodontol 19:687–692

    Article  CAS  PubMed  Google Scholar 

  • Nylander T, Mattisson C, Razumas V, Miezis Y, Håkansson B (1996) A study of entrapped enzyme stability and substrate diffusion in a monoglyceride-based cubic liquid crystalline phase. Colloid Surf A 114:311–320

    Article  CAS  Google Scholar 

  • Park ES, Maniar M, Shah JC (1998) Biodegradable polyanhydride devices of cefazolin sodium, bupivacaine, and taxol for local drug delivery: preparation, and kinetics and mechanism of in vitro release. J Control Release 52:179–189

    Article  CAS  PubMed  Google Scholar 

  • Quinn PJ (2012) The effect of tocopherol on the structure and permeability of phosphatidylcholine liposomes. J Control Release 160:158–163

    Article  CAS  PubMed  Google Scholar 

  • Rattanapak T, Birchall J, Young K, Ishii M, Meglinski I, Rades T, Hook S (2013) Transcutaneous immunization using microneedles and cubosomes: mechanistic investigations using optical coherence tomography and two-photon microscopy. J Control Release 172:894–903

    Article  CAS  PubMed  Google Scholar 

  • Rizwan S, Dong YD, Boyd B, Rades T, Hook S (2007) Characterisation of bicontinuous cubic liquid crystalline systems of phytantriol and water using cryo field emission scanning electron microscopy (cryo FESEM). Micron 38:478–485

    Article  CAS  PubMed  Google Scholar 

  • Rizwan SB, Boyd BJ, Rades T, Hook S (2010) Bicontinuous cubic liquid crystals as sustained delivery systems for peptides and proteins. Expert Opin Drug Deliv 7:1133–1144

    Article  CAS  PubMed  Google Scholar 

  • Rizwan S, Mcburney W, Young K, Hanley T, Boyd B, Rades T, Hook S (2013) Cubosomes containing the adjuvants imiquimod and monophosphoryl lipid A stimulate robust cellular and humoral immune responses. J Control Release 165:16–21

    Article  CAS  PubMed  Google Scholar 

  • Rossetti FC, Fantini MC, Carollo ARH, Tedesco AC, Lopes Badra Bentley MV (2011) Analysis of liquid crystalline nanoparticles by small angle X-ray diffraction: evaluation of drug and pharmaceutical additives influence on the internal structure. J Pharm Sci 100:2849–2857

    Article  CAS  PubMed  Google Scholar 

  • Sadhale Y, Shah JC (1998) Glyceryl monooleate cubic phase gel as chemical stability enhancer of cefazolin and cefuroxime. Pharm Dev Technol 3:549–556

    Article  CAS  PubMed  Google Scholar 

  • Salentinig S, Yaghmur A, Guillot S, Glatter O (2008) Preparation of highly concentrated nanostructured dispersions of controlled size. J Colloid Interface Sci 326:211–220

    Article  CAS  PubMed  Google Scholar 

  • Spicer P (2005) Cubosome processing: industrial nanoparticle technology development. Chem Eng Res Des 83:1283–1286

    Article  CAS  Google Scholar 

  • Swarnakar NK, Jain V, Dubey V, Mishra D, Jain N (2007) Enhanced oromucosal delivery of progesterone via hexosomes. Pharm Res 24:2223–2230

    Article  CAS  PubMed  Google Scholar 

  • Wörle G, Siekmann B, Koch MH, Bunjes H (2006) Transformation of vesicular into cubic nanoparticles by autoclaving of aqueous monoolein/poloxamer dispersions. Eur J Pharm Sci 27:44–53

    Article  PubMed  Google Scholar 

  • Wörle G, Drechsler M, Koch M, Siekmann B, Westesen K, Bunjes H (2007) Influence of composition and preparation parameters on the properties of aqueous monoolein dispersions. Int J Pharm 329:150–157

    Article  PubMed  Google Scholar 

  • Yamada K, Yamashita J, Todo H, Miyamoto K, Hashimoto S, Tokudome Y, Hashimoto F, Sugibayashi K (2011) Preparation and evaluation of liquid-crystal formulations with skin-permeation-enhancing abilities for entrapped drugs. J Oleo Sci 60:31–40

    Article  CAS  PubMed  Google Scholar 

  • Zhai J, Waddington L, Wooster TJ, Aguilar MI, Boyd BJ (2011) Revisiting β-casein as a stabilizer for lipid liquid crystalline nanostructured particles. Langmuir 27:14757–14766

    Article  CAS  PubMed  Google Scholar 

  • Zhen G, Hinton TM, Muir BW, Shi S, Tizard M, Mclean KM, Hartley PG, Gunatillake P (2012) Glycerol monooleate-based nanocarriers for siRNA delivery in vitro. Mol Pharm 9:2450–2457

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This article does not contain any studies with human and animal subjects performed by any of the authors. All authors (D.-H. Kim, A. Jahn, S.-J. Cho, J. S. Kim, M.-H Ki, and D.-D. Kim) declare that they have no conflict of interest. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean government (MSIP) (No. 2009-0083533) and the MarineBio Research Program (NRF-C1ABA001-2011-0018561).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Duk Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, DH., Jahn, A., Cho, SJ. et al. Lyotropic liquid crystal systems in drug delivery: a review. Journal of Pharmaceutical Investigation 45, 1–11 (2015). https://doi.org/10.1007/s40005-014-0165-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-014-0165-9

Keywords

Navigation