Skip to main content

Advertisement

Log in

Multiple Injections of Adipose-Derived Stem Cells Improve Graft Survival in Human-to-Rat Skin Xenotransplantation through Immune Modulation

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background:

Adipose-derived stem cells (ADSCs) exert immunomodulatory effects in the treatment of transplant rejection. This study aimed to evaluate the effects of ADSCs on the skin graft survival in a human-to-rat xenograft transplantation model and to compare single and multiple injections of ADSCs.

Methods:

Full-thickness human skin xenografts were transplanted into the backs of Sprague–Dawley rats. The rats were injected subcutaneously on postoperative days 0, 3, and 5. The injections were as follows: triple injections of phosphate-buffered saline (PBS group), a single injection of ADSCs and double injections of PBS (ADSC × 1 group), and triple injections of ADSCs (ADSC × 3 group). The immunomodulatory effects of ADSCs on human skin xenografts were assessed.

Results:

Triple injections of ADSCs considerably delayed cell-mediated xenograft rejection compared with the PBS and ADSC × 1 groups. The vascularization and collagen type 1–3 ratios in the ADSC × 3 group were significantly higher than those in the other groups. In addition, intragraft infiltration of CD3-, CD4-, CD8-, and CD68-positive cells was reduced in the ADSC × 3 group. Furthermore, in the ADSC × 3 group, the expression levels of proinflammatory cytokine interferon-gamma (IFN-γ) were decreased and immunosuppressive prostaglandin E synthase (PGES) was increased in the xenograft and lymph node samples.

Conclusion:

This study presented that triple injections of ADSCs appeared to be superior to a single injection in suppressing cell-mediated xenograft rejection. The immunomodulatory effects of ADSCs are associated with the downregulation of IFN-γ and upregulation of PGES in skin xenografts and lymph nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Carrier AN, Verma A, Mohiuddin M, Pascual M, Muller YD, Longchamp A, et al. Xenotransplantation: a new era. Front Immunol. 2022;13:900594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Siemionow M, Nasir S. Immunologic responses in vascularized and nonvascularized skin allografts. J Reconstr Microsurg. 2008;24:497–505.

    Article  PubMed  Google Scholar 

  3. Simeonovic CJ, Townsend MJ, Karupiah G, Wilson JD, Zarb JC, Mann DA, et al. Analysis of the Th1/Th2 paradigm in transplantation: interferon-gamma deficiency converts Th1-type proislet allograft rejection to a Th2-type xenograft-like response. Cell Transplant. 1999;8:365–73.

    Article  CAS  PubMed  Google Scholar 

  4. Zhao Y, Xiong W, Yang T, Prall A, Baxter BT, Langnas AN. Xenogeneic skin graft rejection in M-CSF/macrophage deficient osteopetrotic mice. Xenotransplantation. 2003;10:232–9.

    Article  PubMed  Google Scholar 

  5. Yamamoto T, Iwase H, King TW, Hara H, Cooper DKC. Skin xenotransplantation: historical review and clinical potential. Burns. 2018;44:1738–49.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tomita Y, Uchida T, Zhang QW, Shimizu I, Iwai T, Yoshikawa M, et al. Human skin xenograft rejection in CD45 exon-6 knockout mice: the implication of involvement of a direct pathway. Surg Today. 2000;30:816–20.

    Article  CAS  PubMed  Google Scholar 

  7. Sykes M. Immunobiology of transplantation. FASEB J. 1996;10:721–30.

    Article  CAS  PubMed  Google Scholar 

  8. Gardner CR. The pharmacology of immunosuppressant drugs in skin transplant rejection in mice and other rodents. Gen Pharmacol. 1995;26:245–71.

    Article  CAS  PubMed  Google Scholar 

  9. Yañez R, Lamana ML, Garcia-Castro J, Colmenero I, Ramirez M, Bueren JA. Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells. 2006;24:2582–91.

    Article  PubMed  Google Scholar 

  10. Castro-Manrreza ME, Montesinos JJ. Immunoregulation by mesenchymal stem cells: biological aspects and clinical applications. J Immunol Res. 2015;2015:394917.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Puissant B, Barreau C, Bourin P, Clavel C, Corre J, Bousquet C, et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol. 2005;129:118–29.

    Article  PubMed  Google Scholar 

  12. Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood. 2005;105:2821–7.

    Article  CAS  PubMed  Google Scholar 

  13. Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, et al. Human mesenchymal stem cells modulate B-cell functions. Blood. 2006;107:367–72.

    Article  CAS  PubMed  Google Scholar 

  14. Chen CC, Chen RF, Shao JS, Li YT, Wang YC, Brandacher G, et al. Adipose-derived stromal cells modulating composite allotransplant survival is correlated with B cell regulation in a rodent hind-limb allotransplantation model. Stem Cell Res Ther. 2020;11:478.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zomer HD, Jeremias TDS, Ratner B, Trentin AG. Mesenchymal stromal cells from dermal and adipose tissues induce macrophage polarization to a pro-repair phenotype and improve skin wound healing. Cytotherapy. 2020;22:247–60.

    Article  CAS  PubMed  Google Scholar 

  16. Burchell JT, Strickland DH, Stumbles PA. The role of dendritic cells and regulatory T cells in the regulation of allergic asthma. Pharmacol Ther. 2010;125:1–10.

    Article  CAS  PubMed  Google Scholar 

  17. Leto Barone AA, Khalifian S, Lee WP, Brandacher G. Immunomodulatory effects of adipose-derived stem cells: Fact or fiction? Biomed Res Int. 2013;2013:383685.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cui L, Yin S, Liu W, Li N, Zhang W, Cao Y. Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2. Tissue Eng. 2007;13:1185–95.

    Article  CAS  PubMed  Google Scholar 

  19. An JH, Song WJ, Li Q, Kim SM, Yang JI, Ryu MO, et al. Prostaglandin E2 secreted from feline adipose tissue-derived mesenchymal stem cells alleviate DSS-induced colitis by increasing regulatory T cells in mice. BMC Vet Res. 2018;14:354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. DelaRosa O, Lombardo E, Beraza A, Mancheño-Corvo P, Ramirez C, Menta R, et al. Requirement of IFN-gamma-mediated indoleamine 2,3-dioxygenase expression in the modulation of lymphocyte proliferation by human adipose-derived stem cells. Tissue Eng Part A. 2009;15:2795–806.

    Article  CAS  PubMed  Google Scholar 

  21. Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell. 2008;2:141–50.

    Article  CAS  PubMed  Google Scholar 

  22. Melief SM, Zwaginga JJ, Fibbe WE, Roelofs H. Adipose tissue-derived multipotent stromal cells have a higher immunomodulatory capacity than their bone marrow-derived counterparts. Stem Cell Transl Med. 2013;2:455–63.

    Article  Google Scholar 

  23. Hoogduijn MJ, Betjes MG, Baan CC. Mesenchymal stromal cells for organ transplantation: Different sources and unique characteristics? Curr Opin Organ Transplant. 2014;19:41–6.

    Article  CAS  PubMed  Google Scholar 

  24. Lee SM, Lee SC, Kim SJ. Contribution of human adipose tissue-derived stem cells and the secretome to the skin allograft survival in mice. J Surg Res. 2014;188:280–9.

    Article  CAS  PubMed  Google Scholar 

  25. Larocca RA, Moraes-Vieira PM, Bassi EJ, Semedo P, de Almeida DC, da Silva MB, et al. Adipose tissue-derived mesenchymal stem cells increase skin allograft survival and inhibit Th-17 immune response. PLoS One. 2013;8:e76396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Davis TA, Anam K, Lazdun Y, Gimble JM, Elster EA. Adipose-derived stromal cells promote allograft tolerance induction. Stem Cells Transl Med. 2014;3:1444–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rosenberg AS, Singer A. Cellular basis of skin allograft rejection: an in vivo model of immune-mediated tissue destruction. Annu Rev Immunol. 1992;10:333–58.

    Article  CAS  PubMed  Google Scholar 

  28. Halloran PF, Einecke G, Sikosana MLN, Madill-Thomsen K. The biology and molecular basis of organ transplant rejection. Handb Exp Pharmacol. 2022;272:1–26.

    CAS  PubMed  Google Scholar 

  29. Zhou J, He W, Luo G, Wu J. Fundamental immunology of skin transplantation and key strategies for tolerance induction. Arch Immunol Ther Exp (Warsz). 2013;61:397–405.

    Article  CAS  PubMed  Google Scholar 

  30. Wang J, Hao H, Huang H, Chen D, Han Y, Han W. The Effect of Adipose-Derived Stem Cells on Full-Thickness Skin Grafts. Biomed Res Int. 2016;2016:1464725.

    PubMed  PubMed Central  Google Scholar 

  31. Zografou A, Tsigris C, Papadopoulos O, Kavantzas N, Patsouris E, Donta I, et al. Improvement of skin-graft survival after autologous transplantation of adipose-derived stem cells in rats. J Plast Reconstr Aesthet Surg. 2011;64:1647–56.

    Article  CAS  PubMed  Google Scholar 

  32. Vidor SB, Terraciano PB, Valente FS, Rolim VM, Kuhl CP, Ayres LS, et al. Adipose-derived stem cells improve full-thickness skin grafts in a rat model. Res Vet Sci. 2018;118:336–44.

    Article  CAS  PubMed  Google Scholar 

  33. Jeon S, Ha JH, Kim I, Bae J, Kim SW. The immunomodulatory effect of adipose-derived stem cells in xenograft transplantation model. Transplant Proc. 2022;54:2388–95.

    Article  CAS  PubMed  Google Scholar 

  34. Duijvestein M, Vos AC, Roelofs H, Wildenberg ME, Wendrich BB, Verspaget HW, et al. Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase I study. Gut. 2010;59:1662–9.

    Article  PubMed  Google Scholar 

  35. Gao F, Chiu SM, Motan DA, Zhang Z, Chen L, Ji HL, et al. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis. 2016;7:e2062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Keating A. Mesenchymal stromal cells: new directions. Cell Stem Cell. 2012;10:709–16.

    Article  CAS  PubMed  Google Scholar 

  37. Yang C, Wang G, Ma F, Yu B, Chen F, Yang J, et al. Repeated injections of human umbilical cord blood-derived mesenchymal stem cells significantly promotes functional recovery in rabbits with spinal cord injury of two noncontinuous segments. Stem Cell Res Ther. 2018;9:136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mahmoud EE, Adachi N, Mawas AS, Deie M, Ochi M. Multiple intra-articular injections of allogeneic bone marrow-derived stem cells potentially improve knee lesions resulting from surgically induced osteoarthritis: an animal study. Bone Joint J. 2019;101-B:824–31.

    Article  CAS  PubMed  Google Scholar 

  39. Plock JA, Schnider JT, Schweizer R, Zhang W, Tsuji W, Waldner M, et al. The influence of timing and frequency of adipose-derived mesenchymal stem cell therapy on immunomodulation outcomes after vascularized composite allotransplantation. Transplantation. 2017;101:e1–11.

    Article  CAS  PubMed  Google Scholar 

  40. Zhou X, Ning K, Ling B, Chen X, Cheng H, Lu B, et al. Multiple injections of autologous adipose-derived stem cells accelerate the burn wound healing process and promote blood vessel regeneration in a rat model. Stem Cells Dev. 2019;28:1463–72.

    Article  CAS  PubMed  Google Scholar 

  41. Kim H, Hyun MR, Kim SW. The effect of adipose-derived stem cells on wound healing: comparison of methods of application. Stem Cells Int. 2019;2019:2745640.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cendales LC, Kanitakis J, Schneeberger S, Burns C, Ruiz P, Landin L, et al. The Banff 2007 working classification of skin-containing composite tissue allograft pathology. Am J Transplant. 2008;8:1396–400.

    Article  CAS  PubMed  Google Scholar 

  43. Luo Y, Yi X, Liang T, Jiang S, He R, Hu Y, et al. Autograft microskin combined with adipose-derived stem cell enhances wound healing in a full-thickness skin defect mouse model. Stem Cell Res Ther. 2019;10:279.

    Article  PubMed Central  Google Scholar 

  44. Benichou G, Yamada Y, Yun SH, Lin C, Fray M, Tocco G. Immune recognition and rejection of allogeneic skin grafts. Immunotherapy. 2011;3:757–70.

    Article  CAS  PubMed  Google Scholar 

  45. Fairchild RL. The Yin and Yang of IFN-gamma in allograft rejection. Am J Transplant. 2003;3:913–4.

    Article  CAS  PubMed  Google Scholar 

  46. Hidalgo LG, Halloran PF. Role of IFN-gamma in allograft rejection. Crit Rev Immunol. 2002;22:317–49.

    Article  CAS  PubMed  Google Scholar 

  47. Moss MI, Pauli M, Moreau JM, Cohen JN, Rosenblum MD, Lowe MM. Xenograft skin model to manipulate human immune responses in vivo. J Vis Exp. 2022. https://doi.org/10.3791/64040

    Article  PubMed  Google Scholar 

  48. Manning DD, Reed ND, Shaffer CF. Maintenance of skin xenografts of widely divergent phylogenetic origin of congenitally athymic (nude) mice. J Exp Med. 1973;138:488–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Al-Ghadban S, Bunnell BA. Adipose tissue-derived stem cells: immunomodulatory effects and therapeutic potential. Physiology (Bethesda). 2020;35:125–33.

    CAS  PubMed  Google Scholar 

  50. Wolbank S, Peterbauer A, Fahrner M, Hennerbichler S, van Griensven M, Stadler G, et al. Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissue. Tissue Eng. 2007;13:1173–83.

    Article  CAS  PubMed  Google Scholar 

  51. Hu JL, Kim BJ, Yu NH, Kwon ST. Impact of injection frequency of adipose-derived stem cells on allogeneic skin graft survival outcomes in mice. Cell Transplant. 2021;30:9636897211041966.

    Article  PubMed  Google Scholar 

  52. Lorenzi W, Goncalves FDC, Schneider N, Silva EF, Visioli F, Paz AH, et al. Repeated systemic administration of adipose tissue-derived mesenchymal stem cells prevents tracheal obliteration in a murine model of bronchiolitis obliterans. Biotechnol Lett. 2017;39:1269–77.

    Article  CAS  PubMed  Google Scholar 

  53. Famulski KS, Sis B, Billesberger L, Halloran PF. Interferon-gamma and donor MHC class I control alternative macrophage activation and activin expression in rejecting kidney allografts: a shift in the Th1–Th2 paradigm. Am J Transplant. 2008;8:547–56.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang YJ, Wang YC, Wu GF, Zhang W, Wang XJ, Cai WX, et al. Prolonged skin grafts survival time by IFN-gamma in allogeneic skin transplantation model during acute rejection through IFN-gamma/STAT3/IDO pathway in epidermal layer. Biochem Biophys Res Commun. 2018;496:436–42.

    Article  CAS  PubMed  Google Scholar 

  55. Wang H, DeVries ME, Deng S, Khandaker MH, Pickering JG, Chow LH, et al. The axis of interleukin 12 and gamma interferon regulates acute vascular xenogeneic rejection. Nat Med. 2000;6:549–55.

    Article  CAS  PubMed  Google Scholar 

  56. Sultan P, Murray AG, McNiff JM, Lorber MI, Askenase PW, Bothwell AL, et al. Pig but not human interferon-gamma initiates human cell-mediated rejection of pig tissue in vivo. Proc Natl Acad Sci U S A. 1997;94:8767–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bui TM, Wiesolek HL, Sumagin R. ICAM-1: a master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J Leukoc Biol. 2020;108:787–99.

    Article  CAS  PubMed  Google Scholar 

  58. Short SM, Paasch BD, Turner JH, Weiner N, Daugherty AL, Mrsny RJ. Percutaneous absorption of biologically-active interferon-gamma in a human skin graft-nude mouse model. Pharm Res. 1996;13:1020–7.

    Article  CAS  PubMed  Google Scholar 

  59. Zafranskaya M, Nizheharodava D, Yurkevich M, Ivanchik G, Demidchik Y, Kozhukh H, et al. PGE2 contributes to in vitro MSC-mediated inhibition of non-specific and antigen-specific T cell proliferation in MS patients. Scand J Immunol. 2013;78:455–62.

    Article  CAS  PubMed  Google Scholar 

  60. Yanez R, Oviedo A, Aldea M, Bueren JA, Lamana ML. Prostaglandin E2 plays a key role in the immunosuppressive properties of adipose and bone marrow tissue-derived mesenchymal stromal cells. Exp Cell Res. 2010;316:3109–23.

    Article  CAS  PubMed  Google Scholar 

  61. Ghannam S, Pene J, Moquet-Torcy G, Jorgensen C, Yssel H. Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol. 2010;185:302–12.

    Article  CAS  PubMed  Google Scholar 

  62. Bassi EJ, Moraes-Vieira PM, Moreira-Sa CS, Almeida DC, Vieira LM, Cunha CS, et al. Immune regulatory properties of allogeneic adipose-derived mesenchymal stem cells in the treatment of experimental autoimmune diabetes. Diabetes. 2012;61:2534–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y. Immunobiology of mesenchymal stem cells. Cell Death Differ. 2014;21:216–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported and funded by Seoul National University Hospital (Grant Number: 0420203100).

Author information

Authors and Affiliations

Authors

Contributions

S.W.K. and J.H.C. supervised the study; S.J. designed and performed the experiments with assistance from I.K., Y.R.N, K.Y.H, H.C., S.H.K., and Y.J.J.; S.J. and I.K. wrote the manuscript; and all authors commented on the manuscript.

Corresponding authors

Correspondence to Jee Hyeok Chung or Sang Wha Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest. None of the authors have a financial interest in any of the products, devices, or drugs mentioned in this manuscript.

Ethical statement

All animal experiments were approved by the Institutional Animal Care and Use Committee of the Seoul National University Hospital (SNUH-IACUC no. 21-0143-S1A0). Informed consent was waived after approval by the Institutional Review Board of Seoul National University Hospital (no. 2021-3273).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Figure S1. Primer sequences used for quantitative real-time PCR (PDF 43 KB)

13770_2023_552_MOESM2_ESM.pdf

Supplementary Figure S2. Characterization of adipose-derived stem cells. A Representative images of cell morphology under light microscope. Lower (left) and higher (right) magnification. Scale bar, 100 µm. C Flow cytometric analysis for mesenchymal (CD73 and CD90) and hematopoietic (CD11b and CD34) cell markers (PDF 707 KB)

13770_2023_552_MOESM3_ESM.pdf

Supplementary Figure S3. Long-term results of the skin xenografts until postoperative 8 weeks. A Representative images of the xenografts on POD 21, 28 and 56. Scale bar, 1 mm. B The human skin xenografts firmly attached to the rat tissue as dry scabs 8 weeks post operation (PDF 359 KB)

13770_2023_552_MOESM4_ESM.pdf

Supplementary Figure S4. Long-term histological results of the skin xenografts until 8 weeks. A Representative images of hematoxylin and eosin (H&E) and Masson’s trichome (MT) staining in low-power field (LPF) 8 weeks post operation. There were few noticeable differences between the PBS, ADSC × 1, and ADSC × 3 groups at the 8-week time point. Scale bar, 1 mm. B Representative images showing the contact layer between the human xenograft and rat tissue 8 weeks post operation. Regeneration of the rat-derived epithelium was limited to the peripheral rim of the xenografts, which suggests that the grafts did not fully integrate with the host tissue. Scale bar, 3 mm and 1 mm (for upper and lower row, respectively) (PDF 3755 KB)

13770_2023_552_MOESM5_ESM.pdf

Supplementary Figure S5. Immunohistochemistry staining for proliferating cell nuclear antigen (PCNA) in the epithelium of the skin xenografts on POD 10 and 14. PCNA-positive cells decreased with the advancement of rejection, accompanied by disorganization of the epidermis, in the PBS group followed by the ADSC × 1 and ADSC × 3 groups. Scale bar, 50 μm. PBS, phosphate-buffered saline; ADSC, adipose-derived stem cell; POD, postoperative day (PDF 328 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, S., Kim, I., Na, Y.R. et al. Multiple Injections of Adipose-Derived Stem Cells Improve Graft Survival in Human-to-Rat Skin Xenotransplantation through Immune Modulation. Tissue Eng Regen Med 20, 905–919 (2023). https://doi.org/10.1007/s13770-023-00552-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-023-00552-x

Keywords

Navigation