Skip to main content
Log in

Fabrication Parameter-Dependent Physico-Chemical Properties of Thiolated Gelatin/PEGDA Interpenetrating Network Hydrogels

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

BACKGROUND:

The development of three-dimensional hydrogels using polymeric biomaterials is a key technology for tissue engineering and regenerative medicine. Successful tissue engineering requires the control and identification of the physicochemical properties of hydrogels.

METHODS:

Interpenetrating network (IPN) hydrogel was developed using thiolated gelatin (GSH) and poly(ethylene glycol) diacrylate (PEGDA), with the aid of ammonium persulfate (APS) and N,N,N,N'-tetramethylethylenediamine (TEMED) as radical initiators. Each component was prepared in the following concentrations, respectively: 2.5 and 5% GSH (LG and HG), 12.5 and 25% PEGDA (LP and HP), 3% APS/1.5% TEMED (LI), and 4% APS/2% TEMED (HI). IPN hydrogel was fabricated by the mixing of GSH, PEGDA, and initiators in 5:4:1 volume ratios, and incubated at 37 °C for 30 min in the following 6 experimental formulations: (1) HG–LP–LI, (2) HG–LP–HI, (3) LG–HP–LI, (4) LG–HP–HI, (5) HG–HP–HI, and (6) HG–HP–LI. Herein, the physico-chemical characteristics of IPN hydrogels, including their morphological structures, hydrolytic degradation properties, mechanical properties, embedded protein release kinetics, and biocompatibility, were investigated.

RESULTS:

The characteristics of the hydrogel were significantly manipulated by the concentration of the polymer, especially the conversion between HP and LP, rather than the concentration of the initiator, and no hydrogel formulation exhibited any toxicity to fibroblast and HaCaT cells.

CONCLUSION:

We provide structural–physical relationships of the hydrogels by which means their physical properties could be conveniently controlled through component control, which could be versatilely utilized for various organizational engineering strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhao H, Liu M, Zhang Y, Yin J, Pei R. Nanocomposite hydrogels for tissue engineering applications. Nanoscale. 2020;12:14976–95.

    Article  CAS  PubMed  Google Scholar 

  2. Jo H, Yoon M, Gajendiran M, Kim K. Recent strategies in fabrication of gradient hydrogels for tissue engineering applications. Macromol Biosci. 2020;20:e1900300.

    Article  PubMed  Google Scholar 

  3. Xia T, Liu W, Yang L. A review of gradient stiffness hydrogels used in tissue engineering and regenerative medicine. J Biomed Mater Res A. 2017;105:1799–812.

    Article  CAS  PubMed  Google Scholar 

  4. Vega SL, Kwon MY, Burdick JA. Recent advances in hydrogels for cartilage tissue engineering. Eur Cell Mater. 2017;33:59–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ooi HW, Hafeez S, van Blitterswijk CA, Moroni L, Baker MB. Hydrogels that listen to cells: a review of cell-responsive strategies in biomaterial design for tissue regeneration. Mater Horiz. 2017;4:1020–40.

    Article  CAS  Google Scholar 

  6. Naahidi S, Jafari M, Logan M, Wang Y, Yuan Y, Bae H, et al. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv. 2017;35:530–44.

    Article  CAS  PubMed  Google Scholar 

  7. Gibbs DM, Black CR, Dawson JI, Oreffo RO. A review of hydrogel use in fracture healing and bone regeneration. J Tissue Eng Regen Med. 2016;10:187–98.

    Article  CAS  PubMed  Google Scholar 

  8. Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016;1:16071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Koshy ST, Desai RM, Joly P, Li J, Bagrodia RK, Lewin SA, et al. Click-crosslinked injectable gelatin hydrogels. Adv Healthc Mater. 2016;5:541–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rodríguez-Rodríguez R, Espinosa-Andrews H, Velasquillo-Martínez C, García-Carvajal ZY. Composite hydrogels based on gelatin, chitosan and polyvinyl alcohol to biomedical applications: a review. Int J Polym Mater Polym Biomater. 2019;69:1–20.

    Article  Google Scholar 

  11. Echave MC, Sánchez P, Pedraz JL, Orive G. Progress of gelatin-based 3D approaches for bone regeneration. J Drug Deliv Sci Technol. 2017;42:63–74.

    Article  CAS  Google Scholar 

  12. Hathout RM, Omran MK. Gelatin-based particulate systems in ocular drug delivery. Pharm Dev Technol. 2016;21:379–86.

    Article  CAS  PubMed  Google Scholar 

  13. Han L, Xu J, Lu X, Gan D, Wang Z, Wang K, et al. Biohybrid methacrylated gelatin/polyacrylamide hydrogels for cartilage repair. J Mater Chem B. 2017;5:731–41.

    Article  CAS  PubMed  Google Scholar 

  14. Gyles DA, Castro LD, Silva JOC, Ribeiro-Costa RM. A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur Polym J. 2017;88:373–92.

    Article  CAS  Google Scholar 

  15. Gajendiran M, Rhee JS, Kim K. Recent developments in thiolated polymeric hydrogels for tissue engineering applications. Tissue Eng, Part B. 2018;24(1):66–74.

    Article  CAS  Google Scholar 

  16. Stillman ZS, Jarai BM, Raman N, Patel P, Fromen CA. Degradation profiles of poly(ethylene glycol) diacrylate (PEGDA)-based hydrogel nanoparticles. Polym Chem. 2020;11:568–80.

    Article  CAS  PubMed  Google Scholar 

  17. Mellott MB, Searcy K, Pishko MV. Release of protein from highly cross-linked hydrogels of poly(ethylene glycol) diacrylate fabricated by UV polymerization. Biomaterials. 2001;22:929–41.

    Article  CAS  PubMed  Google Scholar 

  18. Cho H, Kim J, Kim S, Jung YC, Wang Y, Kang BJ, et al. Dual delivery of stem cells and insulin-like growth factor-1 in coacervate-embedded composite hydrogels for enhanced cartilage regeneration in osteochondral defects. J Control Release. 2020;327:284–95.

    Article  CAS  PubMed  Google Scholar 

  19. Kim K, Lam J, Lu S, Spicer PP, Lueckgen A, Tabata Y, et al. Osteochondral tissue regeneration using a bilayered composite hydrogel with modulating dual growth factor release kinetics in a rabbit model. J Control Release. 2013;168:166–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tsanaktsidou E, Kammona O, Kiparissides C. On the synthesis and characterization of biofunctional hyaluronic acid based injectable hydrogels for the repair of cartilage lesions. Eur Polym J. 2019;114:47–56.

    Article  CAS  Google Scholar 

  21. Kim JH, Kim S, So JH, Kim K, Koo HJ. Cytotoxicity of gallium-indium liquid metal in an aqueous environment. ACS Appl Mater Interfaces. 2018;10:17448–54.

    Article  CAS  PubMed  Google Scholar 

  22. Wang MO, Etheridge JM, Thompson JA, Vorwald CE, Dean D, Fisher JP. Evaluation of the in vitro cytotoxicity of cross-linked biomaterials. Biomacromology. 2013;14:1321–9.

    Article  CAS  Google Scholar 

  23. Cipitria A, Boettcher K, Schoenhals S, Garske DS, Schmidt-Bleek K, Ellinghaus A, et al. In-situ tissue regeneration through SDF-1alpha driven cell recruitment and stiffness-mediated bone regeneration in a critical-sized segmental femoral defect. Acta Biomater. 2017;60:50–63.

    Article  CAS  PubMed  Google Scholar 

  24. Huebsch N, Lippens E, Lee K, Mehta M, Koshy ST, Darnell MC, et al. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nat Mater. 2015;14:1269–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yu J, Chen F, Wang X, Dong N, Lu C, Yang G, et al. Synthesis and characterization of MMP degradable and maleimide cross-linked PEG hydrogels for tissue engineering scaffolds. Polym Degrad Stab. 2016;133:312–20.

    Article  CAS  Google Scholar 

  26. Sun X, Zhao X, Zhao L, Li Q, D’Ortenzio M, Nguyen B, et al. Development of a hybrid gelatin hydrogel platform for tissue engineering and protein delivery applications. J Mater Chem B. 2015;3:6368–76.

    Article  CAS  PubMed  Google Scholar 

  27. Kim S, Kim J, Gajendiran M, Yoon M, Hwang MP, Wang Y, et al. Enhanced skull bone regeneration by sustained release of bmp-2 in interpenetrating composite hydrogels. Biomacromology. 2018;19:4239–49.

    Article  CAS  Google Scholar 

  28. Tsou YH, Khoneisser J, Huang PC, Xu X. Hydrogel as a bioactive material to regulate stem cell fate. Bioact Mater. 2016;1:39–55.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li H, Wijekoon A, Leipzig ND. 3D differentiation of neural stem cells in macroporous photopolymerizable hydrogel scaffolds. PLoS One. 2012;7:e48824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Annabi N, Nichol JW, Zhong X, Ji C, Koshy S, Khademhosseini A, et al. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B. 2010;16:371–83.

    Article  CAS  Google Scholar 

  31. Matsiko A, Gleeson JP, O’Brien FJ. Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition. Tissue Eng Part A. 2015;21:486–97.

    Article  CAS  PubMed  Google Scholar 

  32. Chen H, Yang F, Hu R, Zhang M, Ren B, Gong X, et al. A comparative study of the mechanical properties of hybrid double-network hydrogels in swollen and as-prepared states. J Mater Chem B. 2016;4:5814–24.

    Article  CAS  PubMed  Google Scholar 

  33. Oyen ML. Mechanical characterisation of hydrogel materials. Int Mater Rev. 2013;59:44–59.

    Article  Google Scholar 

  34. Hu X, Feng L, Xie A, Wei W, Wang S, Zhang J, et al. Synthesis and characterization of a novel hydrogel: salecan/polyacrylamide semi-IPN hydrogel with a desirable pore structure. J Mater Chem B. 2014;2:3646–58.

    Article  CAS  PubMed  Google Scholar 

  35. Oh SH, An DB, Kim TH, Lee JH. Wide-range stiffness gradient PVA/HA hydrogel to investigate stem cell differentiation behavior. Acta Biomater. 2016;35:23–31.

    Article  CAS  PubMed  Google Scholar 

  36. Ghorbani M, Roshangar L, Rad JS. Development of reinforced chitosan/pectin scaffold by using the cellulose nanocrystals as nanofillers: An injectable hydrogel for tissue engineering. Eur Polym J. 2020;130:109697.

    Article  CAS  Google Scholar 

  37. Son KH, Lee JW. Synthesis and characterization of poly(ethylene glycol) based thermo-responsive hydrogels for cell sheet engineering. Materials (Basel). 2016;9:854.

    Article  Google Scholar 

  38. Jain E, Hill L, Canning E, Sell SA, Zustiak SP. Control of gelation, degradation and physical properties of polyethylene glycol hydrogels through the chemical and physical identity of the crosslinker. J Mater Chem B. 2017;5:2679–91.

    Article  CAS  PubMed  Google Scholar 

  39. Browning MB, Cereceres SN, Luong PT, Cosgriff-Hernandez EM. Determination of the in vivo degradation mechanism of PEGDA hydrogels. J Biomed Mater Res A. 2014;102:4244–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Waldeck H, Kao WJ. Effect of the addition of a labile gelatin component on the degradation and solute release kinetics of a stable PEG hydrogel. J Biomater Sci Polym Ed. 2012;23:1595–611.

    Article  CAS  Google Scholar 

  41. Jamadi M, Shokrollahi P, Houshmand B, Joupari MD, Mashhadiabbas F, Khademhosseini A, et al. Poly(ethylene glycol)-based hydrogels as self-inflating tissue expanders with tunable mechanical and swelling properties. Macromol Biosci. 2017;17:856.

    Article  Google Scholar 

  42. Lee JH, Kim HW. Emerging properties of hydrogels in tissue engineering. J Tissue Eng. 2018;9:2041731418768285.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lam J, Kim K, Lu S, Tabata Y, Scott DW, Mikos AG, et al. A factorial analysis of the combined effects of hydrogel fabrication parameters on the in vitro swelling and degradation of oligo(poly(ethylene glycol) fumarate) hydrogels. J Biomed Mater Res A. 2014;102:3477–87.

    Article  PubMed  Google Scholar 

  44. Mantha S, Pillai S, Khayambashi P, Upadhyay A, Zhang Y, Tao O, et al. Smart hydrogels in tissue engineering and regenerative medicine. Materials (Basel). 2019;12:3323.

    Article  CAS  Google Scholar 

  45. Zustiak SP, Leach JB. Characterization of protein release from hydrolytically degradable poly(ethylene glycol) hydrogels. Biotechnol Bioeng. 2011;108:197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tong X, Lee S, Bararpour L, Yang F. Long-term controlled protein release from poly(ethylene glycol) hydrogels by modulating mesh size and degradation. Macromol Biosci. 2015;15:1679–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lin CC, Metters AT. Enhanced protein delivery from photopolymerized hydrogels using a pseudospecific metal chelating ligand. Pharm Res. 2006;23:614–22.

    Article  CAS  PubMed  Google Scholar 

  48. Kim S, Lee J, Hwang MP, Wang Y, Kim K. Influence of fiber architecture and growth factor formulation on osteoblastic differentiation of mesenchymal stem cells in coacervate-coated electrospun fibrous scaffolds. J Ind Eng Chem. 2019;79:236–44.

    CAS  Google Scholar 

  49. Kim K, Chen WC, Heo Y, Wang Y. Polycations and their biomedical applications. Prog Polym Sci. 2016;60:18–50.

    Article  CAS  Google Scholar 

  50. Wilems TS, Lu X, Kurosu YE, Khan Z, Lim HJ, Smith Callahan LA. Effects of free radical initiators on polyethylene glycol dimethacrylate hydrogel properties and biocompatibility. J Biomed Mater Res A. 2017;105:3059–68.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2021R1A4A3024237 and 2019R1A2C1084828).

Author information

Authors and Affiliations

Authors

Contributions

SK: Conceptualization, Experiments, Data analysis, Illustration works, and Writing the paper; YC: Biocompatibility experiments and corresponding data analysis and Illustration works; WL: BSA loading efficacy and release experiments and corresponding data analysis; KK: Ideas, Supervision, Writing-Reviewing and Editing, Funding acquisition.

Corresponding author

Correspondence to Kyobum Kim.

Ethics declarations

Conflict of interest

The authors disclose no conflicts of interest in this work.

Ethical statement

There are no animal experiments carried out for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Choi, Y., Lee, W. et al. Fabrication Parameter-Dependent Physico-Chemical Properties of Thiolated Gelatin/PEGDA Interpenetrating Network Hydrogels. Tissue Eng Regen Med 19, 309–319 (2022). https://doi.org/10.1007/s13770-021-00413-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-021-00413-5

Keywords

Navigation