Skip to main content
Log in

Refunctionalization of Decellularized Organ Scaffold of Pancreas by Recellularization: Whole Organ Regeneration into Functional Pancreas

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background:

Tissue engineering centers on creating a niche similar to the natural one, with a purpose of developing an organ construct. A natural scaffold can replace none while creating a scaffold unique to each tissue in composition, architecture and cues that regulate the character of cells.

Methods:

Whole pancreas from mouse was decellularized using detergent and enzymes, followed by recellularizing with MSC from human placenta. This construct was transplanted in streptozotocin induced diabetic mice. Histopathology of both decellularized and recellularized transplanted pancreas and qPCR analysis were performed to assess its recovery.

Results:

Decellularization removes the cells leaving behind extracellular matrix rich natural scaffold. After reseeding with mesenchymal stem cells, these cells differentiate into pancreas specific cells. Upon transplantation in streptozotocin induced diabetic mice, this organ was capable of restoring its histomorphology and functioning. Restoration of endocrine (islets), the exocrine region (acinar) and vascular network was seen in transplanted pancreas. The process of functional recovery of endocrine system took about 20 days when the mice start showing blood glucose reduction, though none achieved gluconormalization.

Conclusion:

Natural decellularized scaffolds of soft organs can be refunctionalized using recipient’s mesenchymal stem cells to restore structure and function; and counter immune problems arising during transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Karp JM, Langer R. Development and therapeutic applications of advanced biomaterials. Curr Opin Biotechnol. 2007;18:454–9.

    Article  CAS  PubMed  Google Scholar 

  2. Langer R, Tirrell DA. Designing materials for biology and medicine. Nature. 2004;428:487–92.

    Article  CAS  PubMed  Google Scholar 

  3. Scarritt ME, Pashos NC, Bunnell BA. A review of cellularization strategies for tissue engineering of whole organs. Front Bioeng Biotechnol. 2015;3:43.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Spector M. Decellularized tissues and organs: an historical perspective and prospects for the future. Biomed Mater. 2016;11:020201.

    Article  PubMed  CAS  Google Scholar 

  5. Baiguera S, Birchall MA, Macchiarini P. Tissue-engineered tracheal transplantation. Transplantation. 2010;89:485–91.

    Article  PubMed  Google Scholar 

  6. Hinderer S, Schenke-Layland K. Tracheal tissue engineering: building on a strong foundation. Expert Rev Med Devices. 2013;10:33–5.

    Article  CAS  PubMed  Google Scholar 

  7. Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, et al. Clinical transplantation of a tissue-engineered airway. Lancet. 2008;372:2023–30.

    Article  PubMed  Google Scholar 

  8. Baptista PM, Siddiqui MM, Lozier G, Rodriguez SR, Atala A, Soker S. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology. 2011;53:604–17.

    Article  CAS  PubMed  Google Scholar 

  9. Gilpin SE, Ott HC. Using nature’s platform to engineer bio-artificial lungs. Ann Am Thorac Soc. 2015;12:S45–9.

    Article  PubMed  Google Scholar 

  10. Martinello T, Bronzini I, Volpin A, Vindigni V, Maccatrozzo L, Caporale G, et al. Successful recellularization of human tendon scaffolds using adipose-derived mesenchymal stem cells and collagen gel. J Tissue Eng Regen Med. 2014;8:612–9.

    Article  CAS  PubMed  Google Scholar 

  11. Loai Y, Yeger H, Coz C, Antoon R, Islam SS, Moore K, et al. Bladder tissue engineering: tissue regeneration and neovascularization of HA-VEGF-incorporated bladder acellular constructs in mouse and porcine animal models. J Biomed Mater Res A. 2010;94:1205–15.

    PubMed  Google Scholar 

  12. Goh SK, Bertera S, Olsen P, Candiello JE, Halfter W, Uechi G, et al. Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering. Biomaterials. 2013;34:6760–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Peloso A, Urbani L, Cravedi P, Katari R, Maghsoudlou P, Fallas ME, et al. The human pancreas as a source of protolerogenic extracellular matrix scaffold for a new-generation bioartificial endocrine pancreas. Ann Surg. 2016;264:169–79.

    Article  PubMed  Google Scholar 

  14. Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, et al. Perfusion decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14:213–21.

    Article  CAS  PubMed  Google Scholar 

  15. Zhou J, Fritze O, Schleicher M, Wendel HP, Schenke-Layland K, Harasztosi C, et al. Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity. Biomaterials. 2010;31:2549–54.

    Article  CAS  PubMed  Google Scholar 

  16. Schmitt A, Csiki R, Tron A, Saldamli B, Tübel J, Florian K, et al. Optimized protocol for whole organ decellularization. Eur J Med Res. 2017;22:31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32:3233–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Peloso A, Dhal A, Zambon JP, Li P, Orlando G, Atala A, et al. Current achievements and future perspectives in whole-organ bioengineering. Stem Cell Res Ther. 2015;6:107.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hillebrandt KH, Everwuen H, Haep N, Keshi E, Pratschke J, Sauer IM. Strategies based on organ decellularization and recellularization. Transpl Int. 2019;32:517–85.

    Google Scholar 

  20. Qi M. Transplantation of encapsulated pancreatic islets as a treatment for patients with type 1 diabetes mellitus. Adv Med. 2014;2014:429710.

    Article  PubMed  PubMed Central  Google Scholar 

  21. De Carlo E, Baiguera S, Conconi MT, Vigolo S, Grandi C, Lora S, et al. Pancreatic acellular matrix supports islet survival and function in a synthetic tubular device: in vitro and vivo studies. Int J Mol Med. 2010;25:195–202.

    PubMed  Google Scholar 

  22. Mirmalek-Sani SH, Orlando G, McQuilling JP, Pareta R, Mack DL, Salvatori M, et al. Porcine pancreas extracellular matrix as a platform for endocrine pancreas bioengineering. Biomaterials. 2013;34:5488–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Salg GA, Giese NA, Schenk M, Hüttner FJ, Felix K, Probst P, et al. The emerging field of pancreatic tissue engineering: a systematic review and evidence map of scaffold materials and scaffolding techniques for insulin-secreting cells. J Tissue Eng. 2019;10:2041731419884708.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Guruswamy Damodaran R, Vermette P. Decellularized pancreas as a native extracellular matrix scaffold for pancreatic islet seeding and culture. J Tissue Eng Regen Med. 2018;12:1230–7.

    Article  CAS  PubMed  Google Scholar 

  25. Herberts CA, Kwa MS, Hermsen HP. Risk factors in the development of stem cell therapy. J Transl Med. 2011;9:29.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ikebe C, Suzuki K. Mesenchymal stem cells for regenerative therapy: optimization of cell preparation protocols. Biomed Res Int. 2014;2014:951512.

    Google Scholar 

  27. Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: an update. Cell Transplant. 2016;25:829–48.

    Article  PubMed  Google Scholar 

  28. Thomsen GM, Gowing G, Svendsen S, Svendsen CN. The past, present and future of stem cell clinical trials for ALS. Exp Neurol. 2014;262:127–37.

    Article  CAS  PubMed  Google Scholar 

  29. Thejaswi K, Amarnath M, Srinivas G, Jerald MK, Raj TA, Singh S. Immune modulatory responses of mesenchymal stem cells from different sources in cultures and in vivo. Cell Tissue Transpl Ther. 2012;4:1–13.

    CAS  Google Scholar 

  30. Salvatori M, Katari R, Patel T, Peloso A, Mugweru J, Owusu K, et al. Extracellular matrix scaffold technology for bioartificial pancreas engineering: state of the art and future challenges. J Diabetes Sci Technol. 2014;8:159–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Graham ML, Janecek JL, Kittredge JA, Hering BJ, Schuurman HJ. The streptozotocin-induced diabetic nude mouse model: differences between animals from different sources. Comp Med. 2011;61:356–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Steck E, Burkhardt M, Ehrlich H, Richter W. Discrimination between cells of murine and human origin in xenotransplants by species specific genomic in situ hybridization. Xenotransplantation. 2010;17:153–9.

    Article  PubMed  Google Scholar 

  33. Seddon AM, Curnow P, Booth PJ. Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta. 2004;1666:105–17.

    Article  CAS  PubMed  Google Scholar 

  34. Naba A, Clauser KR, Mani DR, Carr SA, Hynes RO. Quantitative proteomic profiling of the extracellular matrix of pancreatic islets during the angiogenic switch and insulinoma progression. Sci Rep. 2017;7:40495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Townsend SE, Gannon M. Extracellular matrix-associated factors play critical roles in regulating pancreatic β-cell proliferation and survival. Endocrinology. 2019;160:1885–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Grauss RW, Hazekamp MG, Oppenhuizen F, van Munsteren CJ, Gittenberger-de Groot AC, DeRuiter MC. Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods. Eur J Cardiothorac Surg. 2005;27:566–71.

    Article  PubMed  Google Scholar 

  37. Vavken P, Joshi S, Murray MM. Triton-x is most effective among three decellularization agents for acl tissue engineering. J Orthop Res. 2009;27:1612–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326:1216–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Juhl K, Bonner-Weir S, Sharma A. Regenerating pancreatic beta-cells: plasticity of adult pancreatic cells and the feasibility of in vivo neo-genesis. Curr Opin Organ Transplant. 2010;15:79–85.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Thorel F, Népote V, Avril I, Kohno K, Desgraz R, Chera S, et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature. 2010;464:1149–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wilson ME, Scheel D, German MS. Gene expression cascades in pancreatic development. Mech Dev. 2003;120:65–80.

    Article  CAS  PubMed  Google Scholar 

  42. Miyatsuka T, Kaneto H, Shiraiwa T, Matsuoka TA, Yamamoto K, Kato K, et al. Persistent expression of PDX-1 in the pancreas causes acinar-to-ductal metaplasia through Stat3 activation. Genes Dev. 2006;20:1435–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lyttle BM, Li J, Krishnamurthy M, Fellows F, Wheeler MB, Goodye CG, et al. Transcription factor expression in the developing human fetal endocrine pancreas. Diabetologia. 2008;51:1169–80.

    Article  CAS  PubMed  Google Scholar 

  44. Ross EA, Williams MJ, Hamazaki T, Terada N, Clapp WL, Adin C, et al. Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. J Am Soc Nephrol. 2009;20:2338–47.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang Y, Cui CB, Yamauchi M, Miguez P, Roach M, Malavarca R, et al. Lineage restriction of human hepatic stem cells to mature fates is made efficient by tissue-specific biomatrix scaffolds. Hepatology. 2011;53:293–305.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors wish to thank Indian council of Medical Sciences New Delhi for financial support to carry out this work. Grant No. 2011-00060. Authors also wish to thank Dr. Archana B. Siva for carefully reading and editing the MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashi Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical statement

All the animal studies were carried out after obtaining permission from IAEC ((IAEC-04/2012, IAEC-93/2014, IAEC-44/2017). Human Placental cells were used from the cryostocks maintained in laboratory after obtaining ethical permission from the Institutional ethical committee (IEC34/2015) and Institutional committee for stem cell research (IC-SCR-10/2015).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17139 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uday Chandrika, K., Tripathi, R., Kameshwari, Y. et al. Refunctionalization of Decellularized Organ Scaffold of Pancreas by Recellularization: Whole Organ Regeneration into Functional Pancreas. Tissue Eng Regen Med 18, 99–112 (2021). https://doi.org/10.1007/s13770-020-00296-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-020-00296-y

Keywords

Navigation