Skip to main content
Log in

The Use of Normal Stem Cells and Cancer Stem Cells for Potential Anti-Cancer Therapeutic Strategy

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

BACKGROUND:

Despite recent advance in conventional cancer therapies including surgery, radiotherapy, chemotherapy, and immunotherapy to reduce tumor size, unfortunately cancer mortality and metastatic cancer incidence remain high. Along with a deeper understanding of stem cell biology, cancer stem cell (CSC) is important in targeted cancer therapy. Herein, we review representative patents using not only normal stem cells as therapeutics themselves or delivery vehicles, but also CSCs as targets for anti-cancer strategy.

METHODS:

Relevant patent literatures published between 2005 and 2017 are discussed to present developmental status and experimental results on using normal stem cells and CSCs for cancer therapy and explore potential future directions in this field.

RESULTS:

Stem cells have been considered as important element of regenerative therapy by promoting tissue regeneration. Particularly, there is a growing trend to use stem cells as a target drug-delivery system to reduce undesirable side effects in non-target tissues. Noteworthy, studies on CSC-specific markers for distinguishing CSCs from normal stem cells and mature cancer cells have been conducted as a selective anti-cancer therapy with few side effects. Many researchers have also reported the development of various substances with anticancer effects by targeting CSCs from cancer tissues.

CONCLUSION:

There has been a continuing increase in the number of studies on therapeutic stem cells and CSC-specific markers for selective diagnosis and therapy of cancer. This review focuses on the current status in the use of normal stem cells and CSCs for targeted cancer therapy. Future direction is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  PubMed  Google Scholar 

  2. Jiang L, Nick AM, Sood AK. Fundamental principles of cancer biology: Does it have relevance to the perioperative period? Curr Anesthesiol Rep. 2015;5:250–6.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Xiu LJ, Sun DZ, Jiao JP, Yan B, Qin ZF, Liu X, et al. Anticancer effects of traditional Chinese herbs with phlegm-eliminating properties - An overview. J Ethnopharmacol. 2015;172:155–61.

    Article  PubMed  Google Scholar 

  4. Wolchok JD, Chan TA. Cancer: Antitumour immunity gets a boost. Nature. 2014;515:496–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Arends J. Metabolism in cancer patients. Anticancer Res. 2010;30:1863–8.

    PubMed  Google Scholar 

  6. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.

    Article  PubMed  CAS  Google Scholar 

  7. Wei X, Yang X, Han ZP, Qu FF, Shao L, Shi YF. Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin. 2013;34:747–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Keefer CL, Pant D, Blomberg L, Talbot NC. Challenges and prospects for the establishment of embryonic stem cell lines of domesticated ungulates. Anim Reprod Sci. 2007;98:147–68.

    Article  PubMed  CAS  Google Scholar 

  9. Harding J, Roberts RM, Mirochnitchenko O. Large animal models for stem cell therapy. Stem Cell Res Ther. 2013;4:23.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yoon SW, Kim DK, Kim KP, Park KS. Rad51 regulates cell cycle progression by preserving G2/M transition in mouse embryonic stem cells. Stem Cells Dev. 2014;23:2700–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kim YY, Min H, Kim H, Choi YM, Liu HC, Ku SY. Differential microRNA expression profile of human embryonic stem cell-derived cardiac lineage cells. Tissue Eng Regen Med. 2017;14:163–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mosna F, Sensebé L, Krampera M. Human bone marrow and adipose tissue mesenchymal stem cells: a user’s guide. Stem Cells Dev. 2010;19:1449–70.

    Article  PubMed  CAS  Google Scholar 

  13. Sachs PC, Francis MP, Zhao M, Brumelle J, Rao RR, Elmore LW, et al. Defining essential stem cell characteristics in adipose-derived stromal cells extracted from distinct anatomical sites. Cell Tissue Res. 2012;349:505–15.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Du Y, Roh DS, Funderburgh ML, Mann MM, Marra KG, Rubin JP, et al. Adipose-derived stem cells differentiate to keratocytes in vitro. Mol Vis. 2010;16:2680–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Lange-Consiglio A, Rossi D, Tassan S, Perego R, Cremonesi F, Parolini O. Conditioned medium from horse amniotic membrane-derived multipotent progenitor cells: immunomodulatory activity in vitro and first clinical application in tendon and ligament injuries in vivo. Stem Cells Dev. 2013;22:3015–24.

    Article  PubMed  CAS  Google Scholar 

  16. Plock JA, Schnider JT, Solari MG, Zheng XX, Gorantla VS. Perspectives on the use of mesenchymal stem cells in vascularized composite allotransplantation. Front Immunol. 2013;4:175.

    PubMed  PubMed Central  Google Scholar 

  17. Insausti CL, Blanquer M, García-Hernández AM, Castellanos G, Moraleda JM. Amniotic membrane-derived stem cells: immunomodulatory properties and potential clinical application. Stem Cells Cloning. 2014;7:53–63.

    PubMed  PubMed Central  Google Scholar 

  18. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  PubMed  CAS  Google Scholar 

  19. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  PubMed  CAS  Google Scholar 

  20. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 2008;26:101–6.

    Article  PubMed  CAS  Google Scholar 

  21. Lam MT, Longaker MT. Comparison of several attachment methods for human iPS, embryonic and adipose-derived stem cells for tissue engineering. J Tissue Eng Regen Med. 2012;6:s80–6.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Navone S, Cristini S, Canzi L, Parati EA, Invernici G. Stem cell patents: an innovative approach to anti-cancer drug discovery. Recent Pat Anticancer Drug Discov. 2010;5:14–21.

    Article  PubMed  CAS  Google Scholar 

  23. Crisostomo PR, Markel TA, Wang Y, Meldrum DR. Surgically relevant aspects of stem cell paracrine effects. Surgery. 2008;143:577–81.

    Article  PubMed  Google Scholar 

  24. Kilroy GE, Foster SJ, Wu X, Ruiz J, Sherwood S, Heifetz A, et al. Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. J Cell Physiol. 2007;212:702–9.

    Article  PubMed  CAS  Google Scholar 

  25. Caplan AI. Why are MSCs therapeutic? New data: new insight. J Pathol. 2009;217:318–24.

    PubMed  CAS  Google Scholar 

  26. Sarojini H, Estrada R, Lu H, Dekova S, Lee MJ, Gray RD, et al. PEDF from mouse mesenchymal stem cell secretome attracts fibroblasts. J Cell Biochem. 2008;104:1793–802.

    Article  PubMed  CAS  Google Scholar 

  27. Schinköthe T, Bloch W, Schmidt A. In vitro secreting profile of human mesenchymal stem cells. Stem Cells Dev. 2008;17:199–206.

    Article  PubMed  CAS  Google Scholar 

  28. Liu CH, Hwang SM. Cytokine interactions in mesenchymal stem cells from cord blood. Cytokine. 2005;32:270–9.

    Article  PubMed  CAS  Google Scholar 

  29. Phan TT, Lim IJ. Isolation, cultivation and uses of stem/progenitor cells. EP2597149 (2013).

  30. Buehring HJ, Treml S, Lammers R. Isolation and/or identification of stem cells having adipocytic, chondrocytic and pancreatic differentiation potential. WO2010000415 (2010).

  31. Malcuit C, Lemieux L, Holmes W, Huertas P, Vilner L. Methods of producing human RPE cells and pharmaceutical preparations of human rpe cells. WO2011063005 (2011).

  32. Lengner CJ. iPS cell technology in regenerative medicine. Ann N Y Acad Sci. 2010;1192:38–44.

    Article  PubMed  CAS  Google Scholar 

  33. Wilmut I, Sullivan G, Chambers I. The evolving biology of cell reprogramming. Philos Trans R Soc Lond B Biol Sci. 2011;366:2183–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Brown RC, Lockwood AH, Sonawane BR. Neurodegenerative diseases: an overview of environmental risk factors. Environ Health Perspect. 2005;113:1250–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Lunn JS, Sakowski SA, Hur J, Feldman EL. Stem cell technology for neurodegenerative diseases. Ann Neurol. 2011;70:353–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Mironov N. Stem cell therapy for the treatment of central nervous system disorders. US20090214484 (2009).

  37. Varney T, Mills C, Danilkovitch A. Use of mesenchymal stem cells for treating genetic diseases and disorders. US20070253931 (2007).

  38. El-Badawy A, El-Badri N. Clinical efficacy of stem cell therapy for diabetes mellitus: a meta-analysis. PLoS One. 2016;11:e0151938.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Riordan N, Ichim T. Treatment of insulin resistance and diabetes. US20080260703 (2008).

  40. Atala A, Milanesi A, Soker S. Regeneration of pancreatic islets by amniotic fluid stem cell therapy. US20070031384 (2007).

  41. Lee EJ, Kim HS. Composition for preventing and treating liver fibrosis or liver cirrhosis, containing, as active ingredient, mesenchymal stem cells derived from human embryonic stem cells. EP3020405 (2017).

  42. Wagner SC, Kim AJ, Ma H, Theofilopoulos D. Immunological treatment of liver failure. US20160074437 (2016).

  43. Fraser J, Hedrick M, Zhu M, Strem B, Daniels E, Wulur I. Methods of using adipose tissue-derived cells in the treatment of cardiovascular conditions. US20050008626 (2005).

  44. Franco WP. Combination growth factor therapy and cell therapy for treatment of acute and chronic heart disease. US20050214260 (2005).

  45. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30.

    Article  PubMed  Google Scholar 

  46. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin. 2007;57:43–66.

    Article  PubMed  Google Scholar 

  47. Seyfried TN, Huysentruyt LC. On the origin of cancer metastasis. Crit Rev Oncog. 2013;18:43–73.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wang W, Goswami S, Lapidus K, Wells AL, Wyckoff JB, Sahai E, et al. Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res. 2004;64:8585–94.

    Article  PubMed  CAS  Google Scholar 

  49. Wang W, Goswami S, Sahai E, Wyckoff JB, Segall JE, Condeelis JS. Tumor cells caught in the act of invading: their strategy for enhanced cell motility. Trends Cell Biol. 2005;15:138–45.

    Article  PubMed  CAS  Google Scholar 

  50. Miller AB, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer. 1981;47:207–14.

    Article  PubMed  CAS  Google Scholar 

  51. Hannun YA. Apoptosis and the dilemma of cancer chemotherapy. Blood. 1997;89:1845–53.

    PubMed  CAS  Google Scholar 

  52. Chahar MK, Sharma N, Dobhal MP, Joshi YC. Flavonoids: a versatile source of anticancer drugs. Pharmacogn Rev. 2011;5:1–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Giuffrida D, Rogers IM. Targeting cancer stem cell lines as a new treatment of human cancer. Recent Pat Anticancer Drug Discov. 2010;5:205–18.

    Article  PubMed  CAS  Google Scholar 

  54. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Dillman RO. Cancer immunotherapy. Cancer Biother Radiopharm. 2011;26:1–64.

    Article  PubMed  CAS  Google Scholar 

  56. Tsiatas M, Mountzios G, Curigliano G. Future perspectives in cancer immunotherapy. Ann Transl Med. 2016;4:273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Ojha R, Bhattacharyya S, Singh SK. Autophagy in cancer stem cells: a potential link between chemoresistance, recurrence, and metastasis. Biores Open Access. 2015;4:97–108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Esmatabadi MJ, Bakhshinejad B, Motlagh FM, Babashah S, Sadeghizadeh M. Therapeutic resistance and cancer recurrence mechanisms: unfolding the story of tumour coming back. J Biosci. 2016;41:497–506.

    Article  PubMed  CAS  Google Scholar 

  59. Etzioni R, Urban N, Ramsey S, McIntosh M, Schwartz S, Reid B, et al. The case for early detection. Nat Rev Cancer. 2003;3:243–52.

    Article  PubMed  CAS  Google Scholar 

  60. Huff CA, Matsui W, Smith BD, Jones RJ. The paradox of response and survival in cancer therapeutics. Blood. 2006;107:431–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Lotfi R, Eisenbacher J, Solgi G, Fuchs K, Yildiz T, Nienhaus C, et al. Human mesenchymal stem cells respond to native but not oxidized damage associated molecular pattern molecules from necrotic (tumor) material. Eur J Immunol. 2011;41:2021–8.

    Article  PubMed  CAS  Google Scholar 

  62. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res. 2002;62:3603–8.

    PubMed  CAS  Google Scholar 

  63. Gao Z, Zhang L, Hu J, Sun Y. Mesenchymal stem cells: a potential targeted-delivery vehicle for anti-cancer drug, loaded nanoparticles. Nanomedicine. 2013;9:174–84.

    Article  PubMed  CAS  Google Scholar 

  64. Dwyer RM, Potter-Beirne SM, Harrington KA, Lowery AJ, Hennessy E, Murphy JM, et al. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res. 2007;13:5020–7.

    Article  PubMed  CAS  Google Scholar 

  65. Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25:2739–49.

    Article  PubMed  CAS  Google Scholar 

  66. Loebinger MR, Eddaoudi A, Davies D, Janes SM. Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res. 2009;69:4134–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res. 2005;65:3307–18.

    Article  PubMed  CAS  Google Scholar 

  68. Menon LG, Picinich S, Koneru R, Gao H, Lin SY, Koneru M, et al. Differential gene expression associated with migration of mesenchymal stem cells to conditioned medium from tumor cells or bone marrow cells. Stem Cells. 2007;25:520–8.

    Article  PubMed  CAS  Google Scholar 

  69. Xin H, Kanehira M, Mizuguchi H, Hayakawa T, Kikuchi T, Nukiwa T, et al. Targeted delivery of CX3CL1 to multiple lung tumors by mesenchymal stem cells. Stem Cells. 2007;25:1618–26.

    Article  PubMed  CAS  Google Scholar 

  70. Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN, et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst. 2004;96:1593–603.

    Article  PubMed  CAS  Google Scholar 

  71. Khakoo AY, Pati S, Anderson SA, Reid W, Elshal MF, Rovira II, et al. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J Exp Med. 2006;203:1235–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Komarova S, Kawakami Y, Stoff-Khalili MA, Curiel DT, Pereboeva L. Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol Cancer Ther. 2006;5:755–66.

    Article  PubMed  CAS  Google Scholar 

  73. Alcayaga F, Khoury M. Menstrual blood-derived stem cells for the treatment of human pancreatic carcinoma. US20170143764 (2017).

  74. Mohammadpour H, Pourfathollah AA, Nikougoftar Zarif M, Khalili S. Key role of Dkk3 protein in inhibition of cancer cell proliferation: an in silico identification. J Theor Biol. 2016;393:98–104.

    Article  PubMed  CAS  Google Scholar 

  75. Giles RH, van Es JH, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta. 2003;1653:1–24.

    PubMed  CAS  Google Scholar 

  76. Zhang X, Yaccoby S, Abramson S, Hariri RJ. Treatment of bone-related cancers using placental stem cells. US9121007 (2015).

  77. Günther C, Peter S. Mesenchymal stem cells for the treatment of metastatic liver disease. WO2017036925 (2017).

  78. Housley RM, Morris CF, Boyle W, Ring B, Biltz R, Tarpley JE, et al. Keratinocyte growth factor induces proliferation of hepatocytes and epithelial cells throughout the rat gastrointestinal tract. J Clin Invest. 1994;94:1764–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Ra JC, Kang SK, Woo SK, Youn HY, Lee HW, Seo KW. Anti-tumor composition comprising human-derived adult stem cells. US20120263685 (2012).

  80. Hermann F, Günther C, Geumann U. Mesenchymal stem cells to enhance anti-tumor activity of immunotherapy. WO2017167959 (2017).

  81. Herberts CA, Kwa MS, Hermsen HP. Risk factors in the development of stem cell therapy. J Transl Med. 2011;9:29.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zhu W, Xu W, Jiang R, Qian H, Chen M, Hu J, et al. Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp Mol Pathol. 2006;80:267–74.

    Article  PubMed  CAS  Google Scholar 

  83. Xu WT, Bian ZY, Fan QM, Li G, Tang TT. Human mesenchymal stem cells (hMSCs) target osteosarcoma and promote its growth and pulmonary metastasis. Cancer Lett. 2009;281:32–41.

    Article  PubMed  CAS  Google Scholar 

  84. Tsai KS, Yang SH, Lei YP, Tsai CC, Chen HW, Hsu CY, et al. Mesenchymal stem cells promote formation of colorectal tumors in mice. Gastroenterology. 2011;141:1046–56.

    Article  PubMed  CAS  Google Scholar 

  85. Roorda BD, ter Elst A, Kamps WA, de Bont ES. Bone marrow-derived cells and tumor growth: contribution of bone marrow-derived cells to tumor micro-environments with special focus on mesenchymal stem cells. Crit Rev Oncol Hematol. 2009;69:187–98.

    Article  PubMed  Google Scholar 

  86. Plumas J, Chaperot L, Richard MJ, Molens JP, Bensa JC, Favrot MC. Mesenchymal stem cells induce apoptosis of activated T cells. Leukemia. 2005;19:1597–604.

    Article  PubMed  CAS  Google Scholar 

  87. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumourstroma promote breast cancer metastasis. Nature. 2007;449:557–63.

    Article  PubMed  CAS  Google Scholar 

  88. Frey-Vasconcells J, Whittlesey KJ, Baum E, Feigal EG. Translation of stem cell research: points to consider in designing preclinical animal studies. Stem Cells Transl Med. 2012;1:353–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Sensebé L, Fleury-Cappellesso S. Biodistribution of mesenchymal stem/stromal cells in a preclinical setting. Stem Cells Int. 2013;2013:678063.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Baraniak PR, McDevitt TC. Stem cell paracrine actions and tissue regeneration. Regen Med. 2010;5:121–43.

    Article  PubMed  Google Scholar 

  91. Spring H, Schüler T, Arnold B, Hämmerling GJ, Ganss R. Chemokines direct endothelial progenitors into tumor neovessels. Proc Natl Acad Sci U S A. 2005;102:18111–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Klopp AH, Spaeth EL, Dembinski JL, Woodward WA, Munshi A, Meyn RE, et al. Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res. 2007;67:11687–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Sagar J, Chaib B, Sales K, Winslet M, Seifalian A. Role of stem cells in cancer therapy and cancer stem cells: a review. Cancer Cell Int. 2007;7:9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Dwyer RM, Khan S, Barry FP, O’Brien T, Kerin MJ. Advances in mesenchymal stem cell-mediated gene therapy for cancer. Stem Cell Res Ther. 2010;1:25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Hodgkinson CP, Gomez JA, Mirotsou M, Dzau VJ. Genetic engineering of mesenchymal stem cells and its application in human disease therapy. Hum Gene Ther. 2010;21:1513–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Cihova M, Altanerova V, Altaner C. Stem cell based cancer gene therapy. Mol Pharm. 2011;8:1480–7.

    Article  PubMed  CAS  Google Scholar 

  97. Fischer U, Steffens S, Frank S, Rainov NG, Schulze-Osthoff K, Kramm CM. Mechanisms of thymidine kinase/ganciclovir and cytosine deaminase/5-fluorocytosine suicide gene therapy-induced cell death in glioma cells. Oncogene. 2005;24:1231–43.

    Article  PubMed  CAS  Google Scholar 

  98. Snyder EY, Aboody KS, Brown AB, Breakefield XO. Systemic delivery of neural stem cells to treat cancer. CA2406664 (2011).

  99. Kim SU. Neural stem cell composition capable of treating cancer and method of treatment. US20120107282 (2012).

  100. Kirn D, Niculescu-Duvaz I, Hallden G, Springer CJ. The emerging fields of suicide gene therapy and virotherapy. Trends Mol Med. 2002;8:S68–73.

    Article  PubMed  CAS  Google Scholar 

  101. Denny WA. Prodrugs for gene-directed enzyme-prodrug therapy (suicide gene therapy). J Biomed Biotechnol. 2003;2003:48–70.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kievit E, Bershad E, Ng E, Sethna P, Dev I, Lawrence TS, et al. Superiority of yeast over bacterial cytosine deaminase for enzyme/prodrug gene therapy in colon cancer xenografts. Cancer Res. 1999;59:1417–21.

    PubMed  CAS  Google Scholar 

  103. Heidelberger C, Danenberg PV, Moran RG. Fluorinated pyrimidines and their nucleosides. In: Meister A, editor. Advances in enzymology and related areas of molecular biology. Wiley; 1983. p. 57–119

  104. Vermes A, Guchelaar HJ, Dankert J. Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother. 2000;46:171–9.

    Article  PubMed  CAS  Google Scholar 

  105. Jain KK. Role of nanobiotechnology in developing personalized medicine for cancer. Technol Cancer Res Treat. 2005;4:645–50.

    Article  PubMed  CAS  Google Scholar 

  106. Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu Rev Biomed Eng. 2007;9:257–88.

    Article  PubMed  CAS  Google Scholar 

  107. Sengupta S, Sasisekharan R. Exploiting nanotechnology to target cancer. Br J Cancer. 2007;96:1315–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Wang MD, Shin DM, Simons JW, Nie S. Nanotechnology for targeted cancer therapy. Expert Rev Anticancer Ther. 2007;7:833–7.

    Article  PubMed  CAS  Google Scholar 

  109. Cady C, Mcasey M. Stem cell targeting of cancer, methods and compositions therefor. WO2009052394 (2009).

  110. Craperi D, Vicat JM, Nissou MF, Mathieu J, Baudier J, Benabid AL, et al. Increased bax expression is associated with cell death induced by ganciclovir in a herpes thymidine kinase gene-expressing glioma cell line. Hum Gene Ther. 1999;10:679–88.

    Article  PubMed  CAS  Google Scholar 

  111. Li G, Lee YW, Lau PY. Cell-mediated gene therapy for cancer using mesenchymal stem cells expressing a suicide gene. US20130171115 (2013).

  112. Deng Q, Zhang Z, Feng X, Li T, Liu N, Lai J, et al. TRAIL-secreting mesenchymal stem cells promote apoptosis in heat-shock-treated liver cancer cells and inhibit tumor growth in nude mice. Gene Ther. 2014;21:317–27.

    Article  PubMed  CAS  Google Scholar 

  113. Attar R, Sajjad F, Qureshi MZ, Tahir F, Hussain E, Fayyaz S, et al. TRAIL based therapy: overview of mesenchymal stem cell based delivery and miRNA controlled expression of TRAIL. Asian Pac J Cancer Prev. 2014;15:6495–7.

    Article  PubMed  Google Scholar 

  114. Sung YC, Kim SW, Kim SJ, Park SH. Vector simultaneously expressing dodecameric trail and HSV-TK suicide genes, and anticancer stem cell therapeutic agent using same. EP2811023 (2015).

  115. Kim SW, Kim SJ, Park SH, Yang HG, Kang MC, Choi YW, et al. Complete regression of metastatic renal cell carcinoma by multiple injections of engineered mesenchymal stem cells expressing dodecameric TRAIL and HSV-TK. Clin Cancer Res. 2013;19:415–27.

    Article  PubMed  CAS  Google Scholar 

  116. Maghazachi AA, Al-Aoukaty A, Schall TJ. CC chemokines induce the generation of killer cells from CD56+ cells. Eur J Immunol. 1996;26:315–9.

    Article  PubMed  CAS  Google Scholar 

  117. Chang A, Nolta J. Mesenchymal stem cells for targeted cancer therapy. US20170000886 (2017).

  118. Niu G, Chen X. Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Curr Drug Targets. 2010;11:1000–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Yong TK. Stem cells for anti-angiogenic therapy in age-related macular degeneration, diabetic retinopathy, corneal vascularisation and cancer. US20170020958 (2017).

  120. Munagala R, Aqil F, Jeyabalan J, Gupta RC. Bovine milk-derived exosomes for drug delivery. Cancer Lett. 2016;371:48–61.

    Article  PubMed  CAS  Google Scholar 

  121. Srivastava A, Babu A, Filant J, Moxley KM, Ruskin R, Dhanasekaran D, et al. Exploitation of exosomes as nanocarriers for gene-, chemo-, and immune-therapy of cancer. J Biomed Nanotechnol. 2016;12:1159–73.

    Article  PubMed  CAS  Google Scholar 

  122. Shtam TA, Kovalev RA, Varfolomeeva EY, Makarov EM, Kil YV, Filatov MV. Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal. 2013;11:88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Nagathihalli NS, Nagaraju G. RAD51 as a potential biomarker and therapeutic target for pancreatic cancer. Biochim Biophys Acta. 2011;1816:209–18.

    PubMed  CAS  Google Scholar 

  124. Ohno S, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther. 2013;21:185–91.

    Article  PubMed  CAS  Google Scholar 

  125. Hatfield S, Ruohola-Baker H. microRNA and stem cell function. Cell Tissue Res. 2008;331:57–66.

    Article  PubMed  CAS  Google Scholar 

  126. Zhang W, Dahlberg JE, Tam W. MicroRNAs in tumorigenesis: a primer. Am J Pathol. 2007;171:728–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Papagiannakopoulos T, Kosik KS. MicroRNAs: regulators of oncogenesis and stemness. BMC Med. 2008;6:15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Epenetos A, Prokopi M. Delivery of microrna using mesenchymal stem cell microparticles. WO2016166600 (2016).

  129. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8.

    Article  PubMed  CAS  Google Scholar 

  130. Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer. 2003;3:895–902.

    Article  PubMed  CAS  Google Scholar 

  131. Al-Hajj M, Clarke MF. Self-renewal and solid tumor stem cells. Oncogene. 2004;23:7274–82.

    Article  PubMed  CAS  Google Scholar 

  132. Passegué E, Jamieson CH, Ailles LE, Weissman IL. Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci U S A. 2003;100:11842–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Jordan CT. Cancer stem cell biology: from leukemia to solid tumors. Curr Opin Cell Biol. 2004;16:708–12.

    Article  PubMed  CAS  Google Scholar 

  134. Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea—a paradigm shift. Cancer Res. 2006;66:1883–90.

    Article  PubMed  CAS  Google Scholar 

  135. Tang C, Ang BT, Pervaiz S. Cancer stem cell: target for anti-cancer therapy. FASEB J. 2007;21:3777–85.

    Article  PubMed  CAS  Google Scholar 

  136. Pierce GB, Speers WC. Tumors as caricatures of the process of tissue renewal: prospects for therapy by directing differentiation. Cancer Res. 1988;48:1996–2004.

    PubMed  CAS  Google Scholar 

  137. Wong RM, Scotland RR, Lau RL, Wang C, Korman AJ, Kast WM, et al. Programmed death-1 blockade enhances expansion and functional capacity of human melanoma antigen-specific CTLs. Int Immunol. 2007;19:1223–34.

    Article  PubMed  CAS  Google Scholar 

  138. Wu K, Kryczek I, Chen L, Zou W, Welling TH. Kupffer cell suppression of CD8+ T cells in human hepatocellular carcinoma is mediated by B7-H1/programmed death-1 interactions. Cancer Res. 2009;69:8067–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE, et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood. 2009;114:1537–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C, et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med. 2010;207:2175–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, Beck A, Miller A, Tsuji T, et al. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci U S A. 2010;107:7875–80.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Frank MH, Frank NY. Therapeutic and diagnostic methods relating to cancer stem cells. EP3130923 (2017).

  143. Bhutani D, Vaishampayan UN. Monoclonal antibodies in oncology therapeutics: present and future indications. Expert Opin Biol Ther. 2013;13:269–82.

    Article  PubMed  CAS  Google Scholar 

  144. Tuccillo FM, de Laurentiis A, Palmieri C, Fiume G, Bonelli P, Borrelli A, et al. Aberrant glycosylation as biomarker for cancer: focus on CD43. Biomed Res Int. 2014;2014:742831.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Yan Y, Zuo X, Wei D. Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Transl Med. 2015;4:1033–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Castellà EM, Ariza A, Pellicer I, Fernández-Vasalo A, Ojanguren I. Differential expression of CD44v6 in metastases of intestinal and diffuse types of gastric carcinoma. J Clin Pathol. 1998;51:134–7.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Liu L, Zhang L, Yang L, Li H, Li R, Yu J, et al. Anti-CD47 antibody as a targeted therapeutic agent for human lung cancer and cancer stem cells. Front Immunol. 2017;8:404.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Bergstein I. Methods of cancer diagnosis and therapy targeted against a cancer stem line. US8715945 (2014).

  149. Roberts DR, Kaur S, Liu C. Methods to eliminate cancer stem cells by targeting cd47. EP3204420 (2017).

  150. Hong KP, Yoon S, Koukoulas I, Cristiano B, Wilson DS, Kopsidas G. Anti-CD43 antibody and use thereof for cancer treatment. WO2017065493 (2017).

  151. Battula VL, Shi Y, Evans KW, Wang RY, Spaeth EL, Jacamo RO, et al. Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. J Clin Invest. 2012;122:2066–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Cheung NK, Saarinen UM, Neely JE, Landmeier B, Donovan D, Coccia PF. Monoclonal antibodies to a glycolipid antigen on human neuroblastoma cells. Cancer Res. 1985;45:2642–9.

    PubMed  CAS  Google Scholar 

  153. Chang HR, Cordon-Cardo C, Houghton AN, Cheung NK, Brennan MF. Expression of disialogangliosides GD2 and GD3 on human soft tissue sarcomas. Cancer. 1992;70:633–8.

    Article  PubMed  CAS  Google Scholar 

  154. Grant SC, Kostakoglu L, Kris MG, Yeh SD, Larson SM, Finn RD, et al. Targeting of small-cell lung cancer using the anti-GD2 ganglioside monoclonal antibody 3F8: a pilot trial. Eur J Nucl Med. 1996;23:145–9.

    Article  PubMed  CAS  Google Scholar 

  155. Battula V, Andreeff M, Mani SA, Sarkar TR. Ganglioside GD2 as a marker and target on cancer stem cells. US20150044233 (2015).

  156. Yeung G, Mulero JJ, Berntsen RP, Loeb DB, Drmanac R, Ford JE. Cloning of a novel epidermal growth factor repeat containing gene EGFL6: expressed in tumor and fetal tissues. Genomics. 1999;62:304–7.

    Article  PubMed  CAS  Google Scholar 

  157. Buchner G, Orfanelli U, Quaderi N, Bassi MT, Andolfi G, Ballabio A, et al. Identification of a new EGF-repeat-containing gene from human Xp22: a candidate for developmental disorders. Genomics. 2000;65:16–23.

    Article  PubMed  CAS  Google Scholar 

  158. Wang X, Gong Y, Wang D, Xie Q, Zheng M, Zhou Y, et al. Analysis of gene expression profiling in meningioma: deregulated signaling pathways associated with meningioma and EGFL6 overexpression in benign meningioma tissue and serum. PLoS One. 2012;7:e52707.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Buckanovich RJ, Sasaroli D, O’Brien-Jenkins A, Botbyl J, Hammond R, Katsaros D, et al. Tumor vascular proteins as biomarkers in ovarian cancer. J Clin Oncol. 2007;25:852–61.

    Article  PubMed  CAS  Google Scholar 

  160. Buckanovich R. Compositions and methods relating to inhibiting cancer cell growth and/or proliferation. US9850300 (2017).

  161. Hofer MD, Fecko A, Shen R, Setlur SR, Pienta KG, Tomlins SA, et al. Expression of the platelet-derived growth factor receptor in prostate cancer and treatment implications with tyrosine kinase inhibitors. Neoplasia. 2004;6:503–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Mani SA, Hollier BG, Evans KW, Werden SJ, Sarkar TR, Tinnirello A. Identification of cancer stem cell markers and use of inhibitors thereof to treat cancer. US20140275201 (2014).

  163. Schepers AG, Snippert HJ, Stange DE, van den Born M, van Es JH, van de Wetering M, et al. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science. 2012;337:730–5.

    Article  PubMed  CAS  Google Scholar 

  164. Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M, et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature. 2009;457:608–11.

    Article  PubMed  CAS  Google Scholar 

  165. Yamazaki T, Okabe H, Kobayashi S, Watanabe T, Matsubara K, Natori O, et al. Cancer stem cell-specific molecule. US20160159904 (2016).

  166. Giannakis M, Stappenbeck TS, Mills JC, Leip DG, Lovett M, Clifton SW, et al. Molecular properties of adult mouse gastric and intestinal epithelial progenitors in their niches. J Biol Chem. 2006;281:11292–300.

    Article  PubMed  CAS  Google Scholar 

  167. May R, Riehl TE, Hunt C, Sureban SM, Anant S, Houchen CW. Identification of a novel putative gastrointestinal stem cell and adenoma stem cell marker, doublecortin and CaM kinase-like-1, following radiation injury and in adenomatous polyposis coli/multiple intestinal neoplasia mice. Stem Cells. 2008;26:630–7.

    Article  PubMed  Google Scholar 

  168. May R, Sureban SM, Hoang N, Riehl TE, Lightfoot SA, Ramanujam R, et al. Doublecortin and CaM kinase-like-1 and leucine-rich-repeat-containing G-protein-coupled receptor mark quiescent and cycling intestinal stem cells, respectively. Stem Cells. 2009;27:2571–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Anant S, Houchen C, Ramalingam S, Ramanujam R, Subramanlam D. Compositions useful for cancer detection and treatment, a cancer stem cell model, and methods of production and use thereof. US8936941 (2015).

  170. Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol. 1998;141:1539–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Sahin U, Tureci O, Walter K, Wagner M, Kreuzberg M, Hacker S, et al. Diagnosis and therapy of cancer involving cancer stem cells. US20160159901 (2016).

  172. Nakahata K, Uehara S, Nishikawa S, Kawatsu M, Zenitani M, Oue T, et al. Aldehyde dehydrogenase 1 (ALDH1) is a potential marker for cancer stem cells in embryonal rhabdomyosarcoma. PLoS One. 2015;10:e0125454.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Rahadiani N, Ikeda J, Mamat S, Matsuzaki S, Ueda Y, Umehara R, et al. Expression of aldehyde dehydrogenase 1 (ALDH1) in endometrioid adenocarcinoma and its clinical implications. Cancer Sci. 2011;102:903–8.

    Article  PubMed  CAS  Google Scholar 

  175. Nishikawa S, Konno M, Hamabe A, Hasegawa S, Kano Y, Ohta K, et al. Aldehyde dehydrogenase high gastric cancer stem cells are resistant to chemotherapy. Int J Oncol. 2013;42:1437–42.

    Article  PubMed  CAS  Google Scholar 

  176. Wicha MS, Dontu G, Ginestier C, Charafe-Jauffret E, Liu S. Aldehyde dehydrogenase 1 (ALDH1) as a cancer stem cell marker. US8435746 (2013).

  177. Asuthkar S, Gondi CS, Nalla AK, Velpula KK, Gorantla B, Rao JS. Urokinase-type plasminogen activator receptor (uPAR)-mediated regulation of WNT/β-catenin signaling is enhanced in irradiated medulloblastoma cells. J Biol Chem. 2012;287:20576–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Romer J, Nielsen BS, Ploug M. The urokinase receptor as a potential target in cancer therapy. Curr Pharm Des. 2004;10:2359–76.

    Article  PubMed  CAS  Google Scholar 

  179. Sidenius N, Blasi F. The urokinase plasminogen activator system in cancer: recent advances and implication for prognosis and therapy. Cancer Metastasis Rev. 2003;22:205–22.

    Article  PubMed  CAS  Google Scholar 

  180. Mazar AP. Antibodies to urokinase- type plasminogen activator receptor(upar)bind cancer stem cells: use in diagnosis and therapy. WO2007134274 (2008).

  181. Lopez J, Meier P. To fight or die—inhibitor of apoptosis proteins at the crossroad of innate immunity and death. Curr Opin Cell Biol. 2010;22:872–81.

    Article  PubMed  CAS  Google Scholar 

  182. Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K, Kitada S, et al. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res. 2000;6:1796–803.

    PubMed  CAS  Google Scholar 

  183. Buchsbaum DJ, LoBuglio AF, Zhou T, Foreman K. Targeting cancer stem cells with DR5 agonists. US8703712 (2014).

  184. Benderra Z, Faussat AM, Sayada L, Perrot JY, Chaoui D, Marie JP, et al. Breast cancer resistance protein and P-glycoprotein in 149 adult acute myeloid leukemias. Clin Cancer Res. 2004;10:7896–902.

    Article  PubMed  CAS  Google Scholar 

  185. Kamiyama N, Takagi S, Yamamoto C, Kudo T, Nakagawa T, Takahashi M, et al. Expression of ABC transporters in human hepatocyte carcinoma cells with cross-resistance to epirubicin and mitoxantrone. Anticancer Res. 2006;26:885–8.

    PubMed  CAS  Google Scholar 

  186. Tsunoda S, Okumura T, Ito T, Kondo K, Ortiz C, Tanaka E, et al. ABCG2 expression is an independent unfavorable prognostic factor in esophageal squamous cell carcinoma. Oncology. 2006;71:251–8.

    Article  PubMed  CAS  Google Scholar 

  187. Yoh K, Ishii G, Yokose T, Minegishi Y, Tsuta K, Goto K, et al. Breast cancer resistance protein impacts clinical outcome in platinum-based chemotherapy for advanced non-small cell lung cancer. Clin Cancer Res. 2004;10:1691–7.

    Article  PubMed  CAS  Google Scholar 

  188. Chu P, Peach R. Cancer stem cells. US20150017677 (2015).

  189. Ono M, Tsuda H, Kobayashi T, Takeshita F, Takahashi RU, Tamura K, et al. The expression and clinical significance of ribophorin II (RPN2) in human breast cancer. Pathol Int. 2015;65:301–8.

    Article  PubMed  CAS  Google Scholar 

  190. Manandhar S, Kim CG, Lee SH, Kang SH, Basnet N, Lee YM. Exostosin 1 regulates cancer cell stemness in doxorubicin-resistant breast cancer cells. Oncotarget. 2017;8:70521–37.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Ochiya T. Method and composition for the treatment, prevention, and diagnosis of cancer containing or derived from cancer stem cells. US20170240902 (2017).

  192. Lee YM. Method for treating breast cancer by targeting breast cancer stem cell. US9617545 (2017).

  193. Karsten U, Goletz S. What makes cancer stem cell markers different? Springerplus. 2013;2:301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Kim WT, Ryu CJ. Cancer stem cell surface markers on normal stem cells. BMB Rep. 2017;50:285–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Ciurea ME, Georgescu AM, Purcaru SO, Artene SA, Emami GH, Boldeanu MV, et al. Cancer stem cells: biological functions and therapeutically targeting. Int J Mol Sci. 2014;15:8169–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Skrtić M, Sriskanthadevan S, Jhas B, Gebbia M, Wang X, Wang Z, et al. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell. 2011;20:674–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Schimmer AD, Skrtic M. Use of tigecycline for treatment of cancer. EP2544692 (2013).

  198. Yeh CT, Wu AT, Chang PM, Chen KY, Yang CN, Yang SC, et al. Trifluoperazine, an antipsychotic agent, inhibits cancer stem cell growth and overcomes drug resistance of lung cancer. Am J Respir Crit Care Med. 2012;186:1180–8.

    Article  PubMed  CAS  Google Scholar 

  199. Huang CY. Pharmaceutical composition for elimination of cancer stem cells. US20140294994 (2014).

  200. Mongan NP, Gudas LJ. Diverse actions of retinoid receptors in cancer prevention and treatment. Differentiation. 2007;75:853–70.

    Article  PubMed  CAS  Google Scholar 

  201. Gudas LJ, Sporn MB, Roberts AB. Cell biology and biochemistry of the retinoids. In: Sporn MB, Roberts AB, Goodman DS, editors. The retinoids: biology, chemistry, and medicine. 2nd ed. New York: Raven; 1994. p. 443–520.

    Google Scholar 

  202. Gudas LJ. Retinoids and vertebrate development. J Biol Chem. 1994;269:15399–402.

    PubMed  CAS  Google Scholar 

  203. Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J. 1996;10:940–54.

    Article  PubMed  CAS  Google Scholar 

  204. Kurisaki A, Wang YY, Takada H, Ekimoto H. Cancer stem cell proliferation inhibitor. EP3146978 (2017).

  205. Arya SS, Salve AR, Chauhan S. Peanuts as functional food: a review. J Food Sci Technol. 2016;53:31–41.

    Article  PubMed  CAS  Google Scholar 

  206. The French National Institute of Health and Medical Research (Inserm). Use of heterosidic flavonoid derivatives for therapy of stem cell cancers. EP2119434 (2009).

  207. Zhang Y, Tang L. Discovery and development of sulforaphane as a cancer chemopreventive phytochemical. Acta Pharmacol Sin. 2007;28:1343–54.

    Article  PubMed  CAS  Google Scholar 

  208. Chen Q, Ganapathy S, Singh KP, Shankar S, Srivastava RK. Resveratrol induces growth arrest and apoptosis through activation of FOXO transcription factors in prostate cancer cells. PLoS One. 2010;5:e15288.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Pandey PR, Okuda H, Watabe M, Pai SK, Liu W, Kobayashi A, et al. Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase. Breast Cancer Res Treat. 2011;130:387–98.

    Article  PubMed  CAS  Google Scholar 

  210. Srivastava R. Compositions and methods for treating and preventing cancer by targeting and inhibiting cancer stem cells. US20160374944 (2016).

  211. Hsu YL, Kuo YC, Kuo PL, Ng LT, Kuo YH, Lin CC. Apoptotic effects of extract from Antrodia camphorata fruiting bodies in human hepatocellular carcinoma cell lines. Cancer Lett. 2005;221:77–89.

    Article  PubMed  CAS  Google Scholar 

  212. Hsu YL, Kuo PL, Cho CY, Ni WC, Tzeng TF, Ng LT, et al. Antrodia cinnamomea fruiting bodies extract suppresses the invasive potential of human liver cancer cell line PLC/PRF/5 through inhibition of nuclear factor kappaB pathway. Food Chem Toxicol. 2007;45:1249–57.

    Article  PubMed  CAS  Google Scholar 

  213. Huang CC, Chen CC, Chen LG. Method for treating a cancer caused by cancer stem cells. US20130089627 (2013).

  214. Yoon JS, Hwang DW, Kim ES, Kim JS, Kim S, Chung HJ, et al. Anti-tumoral effect of arsenic compound, sodium metaarsenite (KML001), in non-Hodgkin’s lymphoma: an in vitro and in vivo study. Invest New Drugs. 2016;34:1–14.

    Article  PubMed  CAS  Google Scholar 

  215. Burger A. Cancer stem cell-targeted and drug resistant cancer therapy. EP2475362 (2012).

  216. Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev. 1998;19:225–68.

    Article  PubMed  CAS  Google Scholar 

  217. Chen WY, Lee EH. Method for treating breast cancer with prolactin receptor agonists. US9370554 (2016).

  218. Wang J, Sun Q, Morita Y, Jiang H, Gross A, Lechel A, et al. A differentiation checkpoint limits hematopoietic stem cell self-renewal in response to DNA damage. Cell. 2012;148:1001–14.

    Article  PubMed  CAS  Google Scholar 

  219. Chung YJ, Park BB, Kang YJ, Kim TM, Eaves CJ, Oh IH. Unique effects of Stat3 on the early phase of hematopoietic stem cell regeneration. Blood. 2006;108:1208–15.

    Article  PubMed  CAS  Google Scholar 

  220. Lin L, Liu A, Peng Z, Lin HJ, Li PK, Li C, et al. STAT3 is necessary for proliferation and survival in colon cancer-initiating cells. Cancer Res. 2011;71:7226–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Ho PL, Lay EJ, Jian W, Parra D, Chan KS. Stat3 activation in urothelial stem cells leads to direct progression to invasive bladder cancer. Cancer Res. 2012;72:3135–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Guryanova OA, Wu Q, Cheng L, Lathia JD, Huang Z, Yang J, et al. Nonreceptor tyrosine kinase BMX maintains self-renewal and tumorigenic potential of glioblastoma stem cells by activating STAT3. Cancer Cell. 2011;19:498–511.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Su YJ, Lai HM, Chang YW, Chen GY, Lee JL. Direct reprogramming of stem cell properties in colon cancer cells by CD44. EMBO J. 2011;30:3186–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Li CJ, Rogoff H, Li Y, Liu J, Li W. Group of STAT3 pathway inhibitors and cancer stem cell pathway inhibitors. US9745278 (2017).

  225. Arora A, Scholar EM. Role of tyrosine kinase inhibitors in cancer therapy. J Pharmacol Exp Ther. 2005;315:971–9.

    Article  PubMed  CAS  Google Scholar 

  226. Prost S, Kirszenbaum M, Le Dantec M, Rousselot P, LeBoulch P. Combination of an anti-cancer agent such as a tyrosinekinase inhibitor and a STAT5 antagonist, preferably a thiazolidinedione, for eliminating hematologic cancer stem cells in vivo and for preventing hematologic cancer relapse. US9623015 (2017).

  227. Shah SN, Cope L, Poh W, Belton A, Roy S, Talbot CC Jr, et al. HMGA1: a master regulator of tumor progression in triple-negative breast cancer cells. PLoS One. 2013;8:e63419.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Smith Resar LM, Huso D, Cope L. Methods of inhibiting cancer stem cells with HMGA1 inhibitors. US9545417 (2017).

  229. Cao X, Fang L, Gibbs S, Huang Y, Dai Z, Wen P, et al. Glucose uptake inhibitor sensitizes cancer cells to daunorubicin and overcomes drug resistance in hypoxia. Cancer Chemother Pharmacol. 2007;59:495–505.

    Article  PubMed  CAS  Google Scholar 

  230. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000;1:11–21.

    Article  PubMed  CAS  Google Scholar 

  231. Kondratskyi A, Yassine M, Kondratska K, Skryma R, Slomianny C, Prevarskaya N. Calcium-permeable ion channels in control of autophagy and cancer. Front Physiol. 2013;4:272.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Cheong JH, Park ES, Park KC. Composition for treating cancer stem cells. US20170312333 (2017).

  233. Croce CM, Calin GA. miRNAs, cancer, and stem cell division. Cell. 2005;122:6–7.

    Article  PubMed  CAS  Google Scholar 

  234. Zhou X, Yue Y, Wang R, Gong B, Duan Z. MicroRNA-145 inhibits tumorigenesis and invasion of cervical cancer stem cells. Int J Oncol. 2017;50:853–62.

    Article  PubMed  CAS  Google Scholar 

  235. Chiou SH, Hsu HS, Cherng JY. Method for inhibiting cancer stem cell like properties and chemoradioresistant properties of cancer or tumor cells with microrna145. US8846633 (2014).

  236. Fukuhara H, Ino Y, Todo T. Oncolytic virus therapy: a new era of cancer treatment at dawn. Cancer Sci. 2016;107:1373–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Martuza R, Rabkin S, Wakimoto H, Kanai R. Use of oncolytic herpes viruses for killing cancer stem cells. US8703120 (2014).

  238. Buchholz C, Bach P, Abel T. Enhanced tumor therapy by tumor stem cell targeted oncolytic viruses. US20140065694 (2014).

  239. O’Brien T, Barry FP. Stem cell therapy and regenerative medicine. Mayo Clin Proc. 2009;84:859–61.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B03031604).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Byeong-Cheol Kang or Jun-Won Yun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

There are no animal experiments carried out for this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, SW., Kim, Y.Y., Kang, WJ. et al. The Use of Normal Stem Cells and Cancer Stem Cells for Potential Anti-Cancer Therapeutic Strategy. Tissue Eng Regen Med 15, 365–380 (2018). https://doi.org/10.1007/s13770-018-0128-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-018-0128-8

Keywords

Navigation