Skip to main content
Log in

MiR-214 Regulates the Human Hair Follicle Stem Cell Proliferation and Differentiation by Targeting EZH2 and Wnt/β-Catenin Signaling Way In Vitro

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

miR-214 plays a major role in the self-renewal of skin tissue. However, whether miR-214 regulates the proliferation and differentiation of human hair follicle stem cells (HFSCs) is unknown. Primary HFSCs were isolated from human scalp skin tissue, cultured, and identified using flow cytometry. An miR-214 mimic and inhibitor were constructed for transfection into HFSCs. The MTS and colony formation assays examined cell proliferation. Immunofluorescence detected the localization and expression levels of TCF4, β-catenin, and differentiation markers. Luciferase reporter and TOP/FOP Flash assays investigated whether miR-214 targeted EZH2 and regulated the Wnt/β-catenin signaling pathway. Western blot determined the expression levels of enhancer of zeste homolog 2 (EZH2), Wnt/β-catenin signaling-related proteins, and HFSC differentiation markers in cells subjected to miR-214 transfection. miR-214 expression was remarkably decreased during the proliferation and differentiation of HFSCs into transit-amplifying (TA) cells. Downregulation of miR-214 promotes the proliferation and differentiation of HFSCs. Overexpression of miR-214 led to decreased expression of EZH2, β-catenin, and TCF-4, whereas downregulation of miR-214 resulted in increased expression of EZH2, β-catenin, and TCF-4 as well as TA differentiation markers. Immunofluorescence assay revealed that inhibiting miR-214 triggered the entry of β-catenin and TCF-4 into the nucleus. The luciferase reporter and TOP/FOP Flash assays demonstrated that miR-214 directly targets EZH2 and affects Wnt/β-catenin signaling. The miR-214/EZH2/β-catenin axis could be considered a candidate target in tissue engineering and regenerative medicine for HFSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang L, Peng R. Unveiling hair follicle stem cells. Stem Cell Rev Rep. 2010;6:658–64.

    Article  Google Scholar 

  2. Ojeh N, Pastar I, Tomic-Canic M, Stojadinovic O. Stem cells in skin regeneration, wound healing, and their clinical applications. Int J Mol Sci. 2015;16:25476–501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Díaz-Flores L Jr, Madrid JF, Gutiérrez R, Varela H, Valladares F, Alvarez-Argüelles H, et al. Adult stem and transit-amplifying cell location. Histol Histopathol. 2006;21:995–1027.

    PubMed  Google Scholar 

  4. Hsu YC, Li L, Fuchs E. Transit-amplifying cells orchestrate stem cell activity and tissue regeneration. Cell. 2014;157:935–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Chou RH, Chiu L, Yu YL, Shyu WC. The potential roles of EZH2 in regenerative medicine. Cell Transplant. 2015;24:313–7.

    Article  PubMed  Google Scholar 

  6. Chou RH, Yu YL, Hung MC. The roles of EZH2 in cell lineage commitment. Am J Transl Res. 2011;3:243–50.

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Ezhkova E, Pasolli HA, Parker JS, Stokes N, Su IH, Hannon G, et al. Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell. 2009;136:1122–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Lien WH, Polak L, Lin M, Lay K, Zheng D, Fuchs E. In vivo transcriptional governance of hair follicle stem cells by canonical Wnt regulators. Nat Cell Biol. 2014;16:179–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Wong SY, Reiter JF. Wounding mobilizes hair follicle stem cells to form tumors. Proc Natl Acad Sci U S A. 2011;108:4093–8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shen Q, Yu W, Fang Y, Yao M, Yang P. Beta-catenin can induce hair follicle stem cell differentiation into transit-amplifying cells through c-myc activation. Tissue Cell. 2017;49:28–34.

    Article  PubMed  CAS  Google Scholar 

  11. Cech TR, Steitz JA. The noncoding RNA revolution—trashing old rules to forge new ones. Cell. 2014;157:77–94.

    Article  PubMed  CAS  Google Scholar 

  12. Li Z, Yang CS, Nakashima K, Rana TM. Small RNA-mediated regulation of iPS cell generation. EMBO J. 2011;30:823–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ning MS, Andl T. Control by a hair’s breadth: the role of microRNAs in the skin. Cell Mol Life Sci. 2013;70:1149–69.

    Article  PubMed  CAS  Google Scholar 

  14. Yi R, Fuchs E. MicroRNAs and their roles in mammalian stem cells. J Cell Sci. 2011;124:1775–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Penna E, Orso F, Taverna D. miR-214 as a key hub that controls cancer networks: small player, multiple functions. J Invest Dermatol. 2015;135:960–9.

    Article  PubMed  CAS  Google Scholar 

  16. Zhao Y, Ponnusamy M, Zhang L, Zhang Y, Liu C, Yu W, et al. The role of miR-214 in cardiovascular diseases. Eur J Pharmacol. 2017;816:138–45.

    Article  PubMed  CAS  Google Scholar 

  17. Zhao C, Sun W, Zhang P, Ling S, Li Y, Zhao D, et al. miR-214 promotes osteoclastogenesis by targeting Pten/PI3 k/Akt pathway. RNA Biol. 2015;12:343–53.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Juan AH, Kumar RM, Marx JG, Young RA, Sartorelli V. Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol Cell. 2009;36:61–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ahmed MI, Alam M, Emelianov VU, Poterlowicz K, Patel A, Sharov AA, et al. MicroRNA-214 controls skin and hair follicle development by modulating the activity of the Wnt pathway. J Cell Biol. 2014;207:549–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Inoue K, Aoi N, Sato T, Yamauchi Y, Suga H, Eto H, et al. Differential expression of stem-cell-associated markers in human hair follicle epithelial cells. Lab Invest. 2009;89:844–56.

    Article  PubMed  CAS  Google Scholar 

  21. Eckert RL, Adhikary G, Balasubramanian S, Rorke EA, Vemuri MC, Boucher SE, et al. Biochemistry of epidermal stem cells. Biochim Biophys Acta. 2013;1830:2427–34.

    Article  PubMed  CAS  Google Scholar 

  22. Mokos ZB, Mosler EL. Advances in a rapidly emerging field of hair follicle stem cell research. Coll Antropol. 2014;38:373–8.

    PubMed  CAS  Google Scholar 

  23. Vitale S, Laganà A, Capriglione S, Angioli R, La Rosa V, Lopez S, et al. Target therapies for uterine carcinosarcomas: current evidence and future perspectives. Int J Mol Sci. 2017;18:E1100.

    Article  PubMed  Google Scholar 

  24. Laganà AS, Salmeri FM, Vitale SG, Triolo O, Götte M. Stem cell trafficking during endometriosis. Reprod Sci. 2017. https://doi.org/10.1177/1933719116687661.

    Article  PubMed  Google Scholar 

  25. Chiofalo B, Laganà AS, Vaiarelli A, La Rosa VL, Rossetti D, Palmara V, et al. Do miRNAs play a role in fetal growth restriction? A fresh look to a busy corner. Biomed Res Int. 2017;2017:6073167.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Laganà AS, Vitale SG, Sapia F, Valenti G, Corrado F, Padula F, et al. miRNA expression for early diagnosis of preeclampsia onset: hope or hype? J Matern Fetal Neonatal Med. 2018;31:817–21.

    Article  PubMed  CAS  Google Scholar 

  27. Yi SJ, Li LL, Tu WB. MiR-214 negatively regulates proliferation and WNT/beta-catenin signaling in breast cancer. Eur Rev Med Pharmacol Sci. 2016;20:5148–54.

    PubMed  Google Scholar 

  28. Cao F, Zhan J, Chen X, Zhang K, Lai R, Feng Z. miR-214 promotes periodontal ligament stem cell osteoblastic differentiation by modulating Wnt/β-catenin signaling. Mol Med Rep. 2017;16:9301–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Li JP, Zhuang HT, Xin MY, Zhou YL. MiR-214 inhibits human mesenchymal stem cells differentiating into osteoblasts through targeting beta-catenin. Eur Rev Med Pharmacol Sci. 2017;21:4777–83.

    PubMed  Google Scholar 

  30. Gao M, Liu Y, Chen Y, Yin C, Chen JJ, Liu S. miR-214 protects erythroid cells against oxidative stress by targeting ATF4 and EZH2. Free Radic Biol Med. 2016;92:39–49.

    Article  PubMed  CAS  Google Scholar 

  31. Cheng AS, Lau SS, Chen Y, Kondo Y, Li MS, Feng H, et al. EZH2-Mediated concordant repression of Wnt antagonists promotes-catenin-dependent hepatocarcinogenesis. Cancer Res. 2011;71:4028–39.

    Article  PubMed  CAS  Google Scholar 

  32. Chang CJ, Yang JY, Xia W, Chen CT, Xie X, Chao CH, et al. EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1-β-catenin signaling. Cancer Cell. 2011;19:86–100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Lu H, Sun J, Wang F, Feng L, Ma Y, Shen Q, et al. Enhancer of zeste homolog 2 activates wnt signaling through downregulating CXXC finger protein 4. Cell Death Dis. 2013;4:e776.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Tseng RC, Lin RK, Wen CK, Tseng C, Hsu HS, Hsu WH, et al. Epigenetic silencing of AXIN2/betaTrCP and deregulation of p53-mediated control lead to wild-type β-catenin nuclear accumulation in lung tumorigenesis. Oncogene. 2008;27:4488–96.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Funding was provided by the National Natural Science Foundation of China (81372114).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng Peng or Ming-Sheng Zhang.

Ethics declarations

Conflicts of interest

The authors have no financial conflicts of interest.

Ethical approval

The study was approved by the Ethical Committee of ChenZhou No.1 People’s Hospital (CZSDYRMYY-2017-18). All the donators signed the informed consent. There are no animal experiments carried out for this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, KT., Deng, JQ., He, XG. et al. MiR-214 Regulates the Human Hair Follicle Stem Cell Proliferation and Differentiation by Targeting EZH2 and Wnt/β-Catenin Signaling Way In Vitro. Tissue Eng Regen Med 15, 341–350 (2018). https://doi.org/10.1007/s13770-018-0118-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-018-0118-x

Keywords

Navigation