Skip to main content
Log in

Current status of three-dimensional printing inks for soft tissue regeneration

  • Special Issue–Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Recently, three-dimensional (3D) printing technologies have become an attractive manufacturing process, which is called additive manufacturing or rapid prototyping. A 3D printing system can design and fabricate 3D shapes and geometries resulting in custom 3D scaffolds in tissue engineering. In tissue regeneration and replacement, 3D printing systems have been frequently used with various biomaterials such as natural and synthetic polymers. In tissue engineering, soft tissue regeneration is very difficult because soft tissue has the properties of high elasticity, flexibility and viscosity which act as an obstacle when creating a 3D structure by stacking layer after layer of biomaterials compared to hard tissue regeneration. To overcome these limitations, many studies are trying to fabricate constructs with a very similar native micro-environmental property for a complex biofunctional scaffold with suitable biological and mechanical parameters by optimizing the biomaterials, for example, control the concentration and diversification of materials. In this review, we describe the characteristics of printing biomaterials such as hydrogel, synthetic polymer and composite type as well as recent advances in soft tissue regeneration. It is expected that 3D printed constructs will be able to replace as well as regenerate defective tissues or injured functional tissues and organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O’brien FJ. Biomaterials & scaffolds for tissue engineering. Materials Today 2011;14:88–95.

    Article  Google Scholar 

  2. Olson JL, Atala A, Yoo JJ. Tissue engineering: current strategies and future directions. Chonnam Med J 2011;47:1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tabata Y. Tissue regeneration based on tissue engineering technology. Congenit Anom (Kyoto) 2004;44:111–124.

    Article  CAS  Google Scholar 

  4. Lu T, Li Y, Chen T. Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int J Nanomedicine 2013;8:337–350.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bajaj P, Schweller RM, Khademhosseini A, West JL, Bashir R. 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu Rev Biomed Eng 2014;16:247–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang X, Zhang Y. Tissue engineering applications of three-dimensional bioprinting. Cell Biochem Biophys 2015;72:777–782.

    Article  CAS  PubMed  Google Scholar 

  7. Do AV, Khorsand B, Geary SM, Salem AK. 3D Printing of scaffolds for tissue regeneration applications. Adv Healthc Mater 2015;4:1742–1762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Petit-Zeman S. Regenerative medicine. Nat Biotechnol 2001;19:201–206.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang ZM. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater 2005;72:156–165.

    Article  PubMed  Google Scholar 

  10. Lee J, Tae G, Kim YH, Park IS, Kim SH, Kim SH. The effect of gelatin incorporation into electrospun poly(L-lactide-co-epsilon-caprolactone) fibers on mechanical properties and cytocompatibility. Biomaterials 2008;29:1872–1879.

    Article  CAS  PubMed  Google Scholar 

  11. Kim JE, Kim SH, Jung Y. In situ chondrogenic differentiation of bone marrow stromal cells in bioactive self-assembled peptide gels. J Biosci Bioeng 2015;120:91–98.

    Article  CAS  PubMed  Google Scholar 

  12. Hassan K, Kim SH, Park I, Lee SH, Kim SH, Jung Y, et al. Small diameter double layer tubular scaffolds using highly elastic PLCL copolymer for vascular tissue engineering. Macromolecular research 2011;19:122–129.

    Article  CAS  Google Scholar 

  13. Ji C, Annabi N, Khademhosseini A, Dehghani F. Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2. Acta Biomater 2011;7:1653–1664.

    Article  CAS  PubMed  Google Scholar 

  14. Chatterjee K, Kraigsley AM, Bolikal D, Kohn J, Simon CG. Gas-foamed scaffold gradients for combinatorial screening in 3D. J Funct Biomater 2012;3:173–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yuksel E, Choo J, Wettergreen M, Liebschner M. Challenges in soft tissue engineering. Semin Plast Surg 2005;19:261–270.

    Article  PubMed Central  Google Scholar 

  16. Katz AJ, Llull R, Hedrick MH, Futrell JW. Emerging approaches to the tissue engineering of fat. Clin Plast Surg 1999;26:587–603, viii.

    CAS  PubMed  Google Scholar 

  17. Pati F, Ha DH, Jang J, Han HH, Rhie JW, Cho DW. Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials 2015;62:164–175.

    Article  CAS  PubMed  Google Scholar 

  18. Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 2003;21:157–161.

    Article  CAS  PubMed  Google Scholar 

  19. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol 2014;32:773–785.

    Article  CAS  PubMed  Google Scholar 

  20. Choi JH, Gimble JM, Lee K, Marra KG, Rubin JP, Yoo JJ, et al. Adipose tissue engineering for soft tissue regeneration. Tissue Eng Part B Rev 2010;16:413–426.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gong H, Agustin J, Wootton D, Zhou JG. Biomimetic design and fabrication of porous chitosan-gelatin liver scaffolds with hierarchical channel network. J Mater Sci Mater Med 2014;25:113–120.

    Article  PubMed  Google Scholar 

  22. Boland T, Mironov V, Gutowska A, Roth EA, Markwald RR. Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anat Rec A Discov Mol Cell Evol Biol 2003;272:497–502.

    Article  PubMed  Google Scholar 

  23. Mironov V, Kasyanov V, Drake C, Markwald RR. Organ printing: promises and challenges. Regen Med 2008;3:93–103.

    Article  CAS  PubMed  Google Scholar 

  24. Derby B. Printing and prototyping of tissues and scaffolds. Science 2012;338:921–926.

    Article  CAS  PubMed  Google Scholar 

  25. Kesti M, Müller M, Becher J, Schnabelrauch M, D’Este M, Eglin D, et al. A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation. Acta Biomater 2015;11:162–172.

    Article  CAS  PubMed  Google Scholar 

  26. Seol YJ, Kang HW, Lee SJ, Atala A, Yoo JJ. Bioprinting technology and its applications. Eur J Cardiothorac Surg 2014;46:342–348.

    Article  PubMed  Google Scholar 

  27. Song BR, Yang SS, Jin H, Lee SH, Lee JH, Park SR, et al. Three dimensional plotted extracellular matrix scaffolds using a rapid prototyping for tissue engineering application. Tissue Eng Regen Med 2015;12:172–180.

    Article  CAS  Google Scholar 

  28. Munaz A, Vadivelu RK, John JS, Barton M, Kamble H, Nguyen NT. Three-dimensional printing of biological matters. J Sci Adv Mater Devices 2016;1:1–17.

    Article  Google Scholar 

  29. Skardal A, Mack D, Kapetanovic E, Atala A, Jackson JD, Yoo J, et al. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med 2012;1:792–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Koch L, Deiwick A, Schlie S, Michael S, Gruene M, Coger V, et al. Skin tissue generation by laser cell printing. Biotechnol Bioeng 2012;109:1855–1863.

    Article  CAS  PubMed  Google Scholar 

  31. Do AV, Akkouch A, Green B, Ozbolat I, Debabneh A, Geary S, et al. Controlled and sequential delivery of fluorophores from 3D printed alginate-PLGA tubes. Ann Biomed Eng 2016 May 27 [Epub ahead of print].

    Google Scholar 

  32. Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 2009;30:5910–5917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee VK, Kim DY, Ngo H, Lee Y, Seo L, Yoo SS, et al. Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 2014;35:8092–8102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cui X, Boland T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 2009;30:6221–6227.

    Article  CAS  PubMed  Google Scholar 

  35. Duan B, Kapetanovic E, Hockaday LA, Butcher JT. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater 2014;10:1836–1846.

    Article  CAS  PubMed  Google Scholar 

  36. Pataky K, Braschler T, Negro A, Renaud P, Lutolf MP, Brugger J. Microdrop printing of hydrogel bioinks into 3D tissue-like geometries. Adv Mater 2012;24:391–396.

    Article  CAS  PubMed  Google Scholar 

  37. Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 2016;34:312–319.

    Article  CAS  PubMed  Google Scholar 

  38. Choi YJ, Kim TG, Jeong J, Yi HG, Park JW, Hwang W, et al. 3D cell printing of functional skeletal muscle constructs using skeletal muscle-derived bioink. Adv Healthc Mater 2016;5:2636–2645.

    Article  CAS  PubMed  Google Scholar 

  39. Ju HW, Lee OJ, Moon BM, Sheikh FA, Lee JM, Kim JH, et al. Silk fibroin based hydrogel for regeneration of burn induced wounds. Tissue Eng Regen Med 2014;11:203–210.

    Article  CAS  Google Scholar 

  40. Ahmed EM. Hydrogel: preparation, characterization, and applications: A review. J Adv Res 2015;6:105–121.

    Article  CAS  PubMed  Google Scholar 

  41. Tan H, Marra KG. Injectable, biodegradable hydrogels for tissue engineering applications. Materials 2010;3:1746–1767.

    Article  CAS  Google Scholar 

  42. Nicodemus GD, Bryant SJ. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev 2008;14:149–165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 2012;33:6020–6041.

    Article  CAS  PubMed  Google Scholar 

  44. El-Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering: progress and challenges. Glob Cardiol Sci Pract 2013;2013:316–342.

    PubMed  PubMed Central  Google Scholar 

  45. Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 2008;17 Suppl 4:467–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maeda M, Tani S, Sano A, Fujioka K. Microstructure and release characteristics of the minipellet, a collagen-based drug delivery system for controlled release of protein drugs. J Control Release 1999;62:313–324.

    Article  CAS  PubMed  Google Scholar 

  47. Sano A, Maeda M, Nagahara S, Ochiya T, Honma K, Itoh H, et al. Atelocollagen for protein and gene delivery. Adv Drug Deliv Rev 2003;55:1651–1677.

    Article  CAS  PubMed  Google Scholar 

  48. Darnell MC, Sun JY, Mehta M, Johnson C, Arany PR, Suo Z, et al. Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels. Biomaterials 2013;34:8042–8048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sun J, Tan H. Alginate-based biomaterials for regenerative medicine applications. Materials 2013;6:1285–1309.

    Article  CAS  Google Scholar 

  50. Liu X, Ma L, Mao Z, Gao C. Chitosan-based biomaterials for tissue repair and regeneration. Adv Polym Sci 2011;244:81–128.

    Article  CAS  Google Scholar 

  51. Mun CH, Hwang JY, Lee SH. Microfluidic spinning of the fibrous alginate scaffolds for modulation of the degradation profile. Tissue Eng Regen Med 2016;13:140–148.

    Article  CAS  Google Scholar 

  52. Lee SH, Chung HY, Shin HI, Park DJ, Choi JH. Osteogenic activity of chitosan-based hybrid scaffold prepared by polyelectrolyte complex formation with alginate. Tissue Eng Regen Med 2014;11:106–112.

    Article  CAS  Google Scholar 

  53. Santos E, Zarate J, Orive G, Hernández RM, Pedraz JL. Biomaterials in cell microencapsulation. Adv Exp Med Biol 2010;670:5–21.

    Article  CAS  PubMed  Google Scholar 

  54. Skardal A, Atala A. Biomaterials for integration with 3-D bioprinting. Ann Biomed Eng 2015;43:730–746.

    Article  PubMed  Google Scholar 

  55. Tabriz AG, Hermida MA, Leslie NR, Shu W. Three-dimensional bioprinting of complex cell laden alginate hydrogel structures. Biofabrication 2015;7:045012.

    Article  PubMed  Google Scholar 

  56. Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci 2012;37:106–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tan H, Chu CR, Payne KA, Marra KG. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 2009;30:2499–2506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Park SA, Lee SH, Kim W. Fabrication of hydrogel scaffolds using rapid prototyping for soft tissue engineering. Macromol Res 2011;19:694–698.

    Article  CAS  Google Scholar 

  59. Henmi C, Nakamura M, Nishiyama Y, Yamaguchi K, Mochizuki S, Takiura K, et al. Development of an effective three dimensional fabrication technique using inkjet technology for tissue model samples. AATEX 2007;14:689–692.

    Google Scholar 

  60. Spotnitz WD. Fibrin Sealant: The Only Approved Hemostat, Sealant, and Adhesive-a Laboratory and Clinical Perspective. ISRN Surg 2014;2014:203943.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Janmey PA, Winer JP, Weisel JW. Fibrin gels and their clinical and bioengineering applications. J R Soc Interface 2009;6:1–10.

    Article  CAS  PubMed  Google Scholar 

  62. Brouwers J. Influence of fibrinogen concentration on the Young’s modulus in fibrin gels. BMTE 2002. Available from: http://www.mate.tue.nl/mate/pdfs/2531.pdf.

    Google Scholar 

  63. Li Y, Meng H, Liu Y, Lee BP. Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering. ScientificWorldJournal 2015;2015:685690.

    PubMed  PubMed Central  Google Scholar 

  64. Xu T, Gregory CA, Molnar P, Cui X, Jalota S, Bhaduri SB, et al. Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 2006;27:3580–3588.

    CAS  PubMed  Google Scholar 

  65. Cen L, Liu W, Cui L, Zhang W, Cao Y. Collagen tissue engineering: development of novel biomaterials and applications. Pediatr Res 2008;63:492–496.

    Article  CAS  PubMed  Google Scholar 

  66. Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem 2009;78:929–958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chattopadhyay S, Raines RT. Review collagen-based biomaterials for wound healing. Biopolymers 2014;101:821–833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee JH, El-Fiqi A, Han CM, Kim HW. Physically-strengthened collagen bioactive nanocomposite gels for bone: a feasibility study. Tissue Eng Regen Med 2015;12:90–97.

    Article  CAS  Google Scholar 

  69. Bauer S. Flexible electronics: Sophisticated skin. Nat Mater 2013;12:871–872.

    Article  CAS  PubMed  Google Scholar 

  70. Lee W, Debasitis JC, Lee VK, Lee JH, Fischer K, Edminster K, et al. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 2009;30:1587–1595.

    Article  CAS  PubMed  Google Scholar 

  71. Lee V, Singh G, Trasatti JP, Bjornsson C, Xu X, Tran TN, et al. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods 2014;20:473–484.

    Article  CAS  PubMed  Google Scholar 

  72. Chang CC, Krishnan L, Nunes SS, Church KH, Edgar LT, Boland ED, et al. Determinants of microvascular network topologies in implanted neovasculatures. Arterioscler Thromb Vasc Biol 2012;32:5–14.

    Article  CAS  PubMed  Google Scholar 

  73. Wu W, DeConinck A, Lewis JA. Omnidirectional printing of 3D microvascular networks. Adv Mater 2011;23:H178–H183.

    Article  CAS  PubMed  Google Scholar 

  74. Lee VK, Lanzi AM, Haygan N, Yoo SS, Vincent PA, Dai G. Generation of Multi-scale vascular network system within 3D hydrogel using 3D Bio-printing technology. Cell Mol Bioeng 2014;7:460–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schwarz S, Koerber L, Elsaesser AF, Goldberg-Bockhorn E, Seitz AM, Dürselen L, et al. Decellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications. Tissue Eng Part A 2012;18:2195–2209.

    Article  CAS  PubMed  Google Scholar 

  76. Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 2008;14:213–221.

    Article  CAS  PubMed  Google Scholar 

  77. Jang J, Kim TG, Kim BS, Kim SW, Kwon SM, Cho DW. Tailoring mechanical properties of decellularized extracellular matrix bioink by vitamin B2-induced photo-crosslinking. Acta Biomater 2016;33:88–95.

    Article  CAS  PubMed  Google Scholar 

  78. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials 2011;32:3233–3243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pati F, Jang J, Ha DH, Kim SW, Rhie JW, Shim JH, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 2014;5:3935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva SS, et al. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 2007;4:999–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shanjani Y, Pan CC, Elomaa L, Yang Y. A novel bioprinting method and system for forming hybrid tissue engineering constructs. Biofabrication 2015;7:045008.

    Article  CAS  PubMed  Google Scholar 

  82. Shim JH, Lee JS, Kim JY, Cho DW. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromech Microeng 2012;22:085014.

    Article  Google Scholar 

  83. Kundu J, Shim JH, Jang J, Kim SW, Cho DW. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med 2015;9:1286–1297.

    Article  CAS  PubMed  Google Scholar 

  84. Park S, Kim S, Choi J. Development of a multi-nozzle bioprinting system for 3D tissue structure fabrication. In: Control, Automation and Systems (ICCAS). Busan: 2015 15th International Conference on. IEEE; 2015. p. 1874–1877.

    Google Scholar 

  85. Serrano MC, Pagani R, Vallet-Regí M, Peña J, Rámila A, Izquierdo I, et al. In vitro biocompatibility assessment of poly(epsilon-caprolactone) films using L929 mouse fibroblasts. Biomaterials 2004;25:5603–5611.

    Article  CAS  PubMed  Google Scholar 

  86. Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng 2015;9:4.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Atala A, Yoo JJ. Essentials of 3D biofabrication and translation. 1st ed. Cambridge, MA: Academic Press; 2015.

    Google Scholar 

  88. Park SY, Choi JW, Park JK, Song EH, Park SA, Kim YS, et al. Tissue-engineered artificial oesophagus patch using three-dimensionally printed polycaprolactone with mesenchymal stem cells: a preliminary report. Interact Cardiovasc Thorac Surg 2016;22:712–717.

    Article  PubMed  Google Scholar 

  89. Hong S, Sycks D, Chan HF, Lin S, Lopez GP, Guilak F, et al. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv Mater 2015;27:4035–4040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhu J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 2010;31:4639–4656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Merceron TK, Burt M, Seol YJ, Kang HW, Lee SJ, Yoo JJ, et al. A 3D bioprinted complex structure for engineering the muscle-tendon unit. Biofabrication 2015;7:035003.

    Article  PubMed  Google Scholar 

  92. Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen DH, Cohen DM, et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 2012;11:768–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngmee Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.E., Kim, S.H. & Jung, Y. Current status of three-dimensional printing inks for soft tissue regeneration. Tissue Eng Regen Med 13, 636–646 (2016). https://doi.org/10.1007/s13770-016-0125-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-016-0125-8

Key Words

Navigation