Skip to main content
Log in

The responses of human adipose-derived mesenchymal stem cells on polycaprolactone-based scaffolds: an in vitro study

  • Original Article
  • Cell Biology
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Polycaprolactone (PCL) has been investigated as an alternative synthetic polymeric scaffold for tissue engineering application. In this study, the biological responses of human adipose-derived mesenchymal stem cells (hADSCs) on PCL-based scaffolds were investigated in vitro. The hADSCs were isolated and characterized. Solvent casting and particulate leaching method was employed as the fabrication method for PCL-based scaffolds. Here, we illustrated that the isolated hADSCs exhibited fibroblast-like morphology, formed colonies in culture, and expressed several stem cell markers. Moreover, the differentiation potency toward adipogenic, neurogenic and osteogenic lineage was noted when cultured in the specific conditions. Polycaprolactone/hydroxyapatite composite scaffold (PCL/HA) supported hADSCs attachment better than PCL scaffolds. Moreover, the alkaline phosphatase enzymatic activity and mineral deposition were greater on PCL/HA than PCL. Together, this present study illustrates the potential utilization of PCL/HA and hADSC for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GT Huang, S Gronthos, S Shi, Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine, J Dent Res, 88, 792 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. H Mizuno, Adipose-derived stem cells for tissue repair and regeneration: ten years of research and a literature review, J Nippon Med Sch, 76, 56 (2009).

    Article  PubMed  Google Scholar 

  3. EM Horwitz, M Dominici, How do mesenchymal stromal cells exert their therapeutic benefit?, Cytotherapy, 10, 771 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. J Lee, HM Sung, JD Jang, et al., Successful reconstruction of 15-cm segmental defects by bone marrow stem cells and resected autogenous bone graft in central hemangioma, J Oral Maxillofac Surg, 68, 188 (2010).

    Article  PubMed  Google Scholar 

  5. M Tadokoro, R Kanai, T Taketani, et al., New bone formation by allogeneic mesenchymal stem cell transplantation in a patient with perinatal hypophosphatasia, J Pediatr, 154, 924 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. M Locke, J Windsor, PR Dunbar, Human adipose-derived stem cells: isolation, characterization and applications in surgery, ANZ J Surg, 79, 235 (2009).

    Article  PubMed  Google Scholar 

  7. LJ Fischer, S McIlhenny, T Tulenko, et al., Endothelial differentiation of adipose-derived stem cells: effects of endothelial cell growth supplement and shear force, J Surg Res, 152, 157 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. LE Flynn, The use of decellularized adipose tissue to provide an inductive microenvironment for the adipogenic differentiation of human adipose-derived stem cells, Biomaterials, 31, 4715 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. T Rada, RL Reis, ME Gomes, Distinct Stem Cells Subpopulations Isolated from Human Adipose Tissue Exhibit Different Chondrogenic and Osteogenic Differentiation Potential, Stem Cell Rev, 7, 64 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. YS Choi, GJ Dusting, S Stubbs, et al., Differentiation of human adipose-derived stem cells into beating cardiomyocytes, J Cell Mol Med, 14, 878 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. S Jang, HH Cho, YB Cho, et al., Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin, BMC Cell Biol, 11, 25 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  12. LS Nair, CT Laurencin, Biodegradable polymers as biomaterials, Progress in Polymer Science, 32, 762 (2007).

    Article  CAS  Google Scholar 

  13. A Kumari, SK Yadav, SC Yadav, Biodegradable polymeric nanoparticles based drug delivery systems, Colloids Surf B Biointerfaces, 75, 1 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. RS Bezwada, DD Jamiolkowski, IY Lee, et al., Monocryl suture, a new ultra-pliable absorbable monofilament suture, Biomaterials, 16, 1141 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. PD Darney, SE Monroe, CM Klaisle et al., Clinical evaluation of the Capronor contraceptive implant: preliminary report, Am J Obstet Gynecol, 160, 1292 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. B Chuenjitkuntaworn, W Inrung, D Damrongsri, et al., Polycaprolactone/hydroxyapatite composite scaffolds: Preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells, J Biomed Mater Res A, 94, 241 (2010).

    Article  PubMed  Google Scholar 

  17. E Yoon, S Dhar, DE Chun, et al., In vivo osteogenic potential of human adipose-derived stem cells/poly lactide-co-glycolic acid constructs for bone regeneration in a rat critical-sized calvarial defect model, Tissue Eng, 13, 619 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. PJ Taub, J Yau, M Spangler, et al., Bioengineering of calvaria with adult stem cells, Plast Reconstr Surg, 123, 1178 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. BM Seo, W Sonoyama, T Yamaza, et al., SHED repair criticalsize calvarial defects in mice, Oral Dis, 14, 428 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Z Zhao, Z Wang, C Ge, et al., Healing cranial defects with AdRunx2-transduced marrow stromal cells, J Dent Res, 86, 1207 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. W Singhatanadgit, N Donos, I Olsen, Isolation and characterization of stem cell clones from adult human ligament, Tissue Eng Part A, 15, 2625 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. T Osathanon, K Subbalekha, P Sastravaha, et al., Notch signalling inhibits the adipogenic differentiation of single-cell-derived mesenchymal stem cell clones isolated from human adipose tissue, Cell Biol Int, 36, 1161 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. T Osathanon, N Nowwarote, P Pavasant, Basic fibroblast growth factor inhibits mineralization but induces neuronal differentiation by human dental pulp stem cells through a FGFR and PLCgamma signaling pathway, J Cell Biochem, 112, 1807 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. T Osathanon, P Ritprajak, N Nowwarote, et al., Surface-bound orientated Jagged-1 enhances osteogenic differentiation of human periodontal ligament-derived mesenchymal stem cells, J Biomed Mater Res A, 101, 358 (2013).

    Article  PubMed  Google Scholar 

  25. M Neupane, CC Chang, M Kiupel, et al., Isolation and characterization of canine adipose-derived mesenchymal stem cells, Tissue Eng Part A, 14, 1007 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. JJ Mao, DJ Prockop, Stem cells in the face: tooth regeneration and beyond, Cell Stem Cell, 11, 291 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. C Csaki, U Matis, A Mobasheri, et al., Chondrogenesis, osteogenesis and adipogenesis of canine mesenchymal stem cells: a biochemical, morphological and ultrastructural study, Histochem Cell Biol, 128, 507 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. L Cui, B Liu, G Liu, et al., Repair of cranial bone defects with adipose derived stem cells and coral scaffold in a canine model, Biomaterials, 28, 5477 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. L Wang, J Deng, W Tian, et al., Adipose-derived stem cells are an effective cell candidate for treatment of heart failure: an MR imaging study of rat hearts, Am J Physiol Heart Circ Physiol, 297, H1020 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. T Rada, RL Reis, ME Gomes, Distinct stem cells subpopulations isolated from human adipose tissue exhibit different chondrogenic and oteogenic differentiation potential, Stem Cell Rev, 7, 64 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. CS Lin, ZC Xin, CH Deng, et al., Defining adipose tissuederived stem cells in tissue and in culture, Histol Histopathol, 25, 807 (2010).

    PubMed  Google Scholar 

  32. WY Yeong, N Sudarmadji, HY Yu, et al., Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering, Acta Biomater, 6, 2028 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. S Kashanian, F Harding, Y Irani, et al., Evaluation of mesoporous silicon/polycaprolactone composites as ophthalmic implants, Acta Biomater, 6, 3566 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. HJ Shao, YT Lee, CS Chen, et al., Modulation of gene expression and collagen production of anterior cruciate ligament cells through cell shape changes on polycaprolactone/chitosan blends, Biomaterials, 31, 4695 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. PM Lopez-Perez, RM da Silva, RA Sousa, et al., Plasmainduced polymerization as a tool for surface functionalization of polymer scaffolds for bone tissue engineering: An in vitro study, Acta Biomater, 6, 3704 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. D Lahiri, F Rouzaud, T Richard, et al., Boron nitride nanotube reinforced polylactide-polycaprolactone copolymer composite: Mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro, Acta Biomater, 6, 3524 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. CG Jeong, SJ Hollister, A comparison of the influence of material on in vitro cartilage tissue engineering with PCL, PGS, and POC 3D scaffold architecture seeded with chondrocytes, Biomaterials, 31, 4304 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. S Fuchs, X Jiang, I Gotman, et al., Influence of polymer content in Ca-deficient hydroxyapatite-polycaprolactone nanocomposites on the formation of microvessel-like structures, Acta Biomater, 6, 3169 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. X Zhang, V Thomas, Y Xu, et al., An in vitro regenerated functional human endothelium on a nanofibrous electrospun scaffold, Biomaterials, 31, 4376 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. W Mattanavee, O Suwantong, S Puthong, et al., Immobilization of biomolecules on the surface of electrospun polycaprolactone fibrous scaffolds for tissue engineering, ACS Appl Mater Interfaces, 1, 1076 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. FJ Xu, ZH Wang, WT Yang, Surface functionalization of polycaprolactone films via surface-initiated atom transfer radical polymerization for covalently coupling cell- adhesive biomolecules, Biomaterials, 31, 3139 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Y Usui, T Uematsu, T Uchihashi, et al., Inorganic polyphosphate induces osteoblastic differentiation. J Dent Res, 89, 504 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. S Balloni, EM Calvi, F Damiani, et al., Effects of titanium surface roughness on mesenchymal stem cell commitment and differentiation signaling, Int J Oral Maxillofac. Implants, 24, 627 (2009).

    PubMed  Google Scholar 

  44. TS Silva, DC Machado, C Viezzer, et al., Effect of titanium surface roughness on human bone marrow cell proliferation and differentiation: an experimental study, Acta Cir Bras, 24, 200 (2009).

    PubMed  Google Scholar 

  45. Z Lu, SI Roohani-Esfahni, G Wang, et al., Bone biomimetic microenvironment induces osteogenic differentiation of adipose tissue-derived mesenchymal stem cells, Nanomedicine, 8, 507 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. MC Phipps, WC Clem, SA Catledge, et al., Mesenchymal stem cell response to bone-mimetic electrospun matrices composed of polycaprolactone, collagen I and nanoparticulate hydroxyapatite, PLoS One, 6, e16813 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Z Lu, SI Roohani-Esfahni, PC Kwok, et al., Osteoblasts on rod shaped hydroxyapatite nanoparticles incorporated PCL film provide an optimal osteogenic niche for stem cell differentiation, Tissue Eng Part A, 17, 1651 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanaphum Osathanon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osathanon, T., Chuenjitkuntaworn, B., Nowwarote, N. et al. The responses of human adipose-derived mesenchymal stem cells on polycaprolactone-based scaffolds: an in vitro study. Tissue Eng Regen Med 11, 239–246 (2014). https://doi.org/10.1007/s13770-014-0015-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-014-0015-x

Key words

Navigation