Skip to main content

Advertisement

Log in

Relevance of phosphate solubilizing microbes in sustainable crop production: a review

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Phosphorus (P) is one of the most important factors regarding plant growth and development. Its deficiency can be compensated by adding chemical fertilizers which are expensive and have an overall negative impact on the ecosystem. Their continuous use leads to the depletion of soil fertility, accumulation of toxic elements which will affect the normal soil micro flora, leading to an imbalance in equilibrium. Phosphate solubilizing microbes (PSM) may be an alternative way to overcome the P deficiency without causing any harm to environment. For this, their biodiversity, mode of action, colonizing ability and their careful relevance should be used as trustworthy components in sustainable agricultural systems. Due to variability in the performance of these microbes, their exploitation in the area of nanotechnology becomes a challenge in sustainable agriculture. In this review, we have discussed the use of PSM as biofertilizers, responsible factors and the strains that are used for the synthesis of different nanoparticles whose implementation will not only promote sustainable agriculture but also be helpful in commercial applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad F, Ahmad I, Khan MS (2005) Indole acetic acid production by the indigenous isolates of azotobacter and flourescent Pseudomonas in the presence and absence of tryptophan. Turk J Biol 29:29–34

    CAS  Google Scholar 

  • Ahmed E, Kalathil S, Shi L, Alharbi O, Wang P (2018) Synthesis of ultra-small platinum, palladium and gold nanoparticles by Shewanella loihica PV-4 electrochemically active biofilms and their enhanced catalytic activities. J Saudi Chem Soc 22:919–929

    Article  CAS  Google Scholar 

  • Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167

    Article  CAS  Google Scholar 

  • Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00971

    Article  Google Scholar 

  • Alori ET, Glick BR, Babalola OO (2017a) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971

    Article  Google Scholar 

  • Altomare C, Norvell WA, Björkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant growth promoting and biocontrol fungus trichoderma harzianum rifai 1295–22. Appl Environ Microbiol 65:2926–2933

    Article  CAS  Google Scholar 

  • Antoun, H., Pre´ Vost, D., (2005) Ecology of Plant Growth Promoting Rhizobacteria, PGPR: Biocontrol and Bio fertilization. Springer, Dordrecht. 1–38

  • Asghar HN, Zahir ZA, Arshad M, Khaliq A (2002) Relationship between in vitro production of auxins by rhizobacteria and their growth-promoting activities in brassica junceal. Biol Fertil Soils 35:1–237

    CAS  Google Scholar 

  • Badawi FSF, Amm B, Desoky AH (2011) Peanut plant growth and yield as influenced by co-inoculation with bradyrhizobium and some rhizomicroorganisms under sandy loam soil conditions. Ann Agric Sci 56:17–25

    Article  Google Scholar 

  • Bar-Yosef B, Rogers RD, Wolfram JH, Richman E (1999) Pseudomonas cepacia-mediated rock phosphate solubilization in kaolinite and montmorillonite suspensions. Soil Sci Soc Am J 63:1703–1708

    Article  CAS  Google Scholar 

  • Beever RE, Burns (1980) Phosphorus uptake, storage and utilization by fungi, advances in botanical. Research 8:127–219

    CAS  Google Scholar 

  • Beveridge T, Murray R (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141:876–887

    Article  CAS  Google Scholar 

  • Bononi L, Chiaramonte JB, Pansa CC (2020) Phosphorus-solubilizing Trichoderma spp from Amazon soils improve soybean plant growth. Sci Rep 10:2858

    Article  CAS  Google Scholar 

  • Chabot R, Antoun H, Cescas MP (1996) Growth promotion of maize and lettuce by phosphate solubilizing rhizobium leguminosarum biovar phaseoli. Plant Soil 184:311–321

    Article  CAS  Google Scholar 

  • Chakraborty U, Chakraborty BN, Basnet M, Chakraborty AP (2009) Evaluation of ochrobactrum anthropi trs-2 and its talc based formulation for enhancement of growth of tea plants and management of brown root rot disease. J Appl Microbiol 107:625–634

    Article  CAS  Google Scholar 

  • Chakraborty J, Mallick S, Raj R (2018) Functionalization of extracellular polymers of pseudomonas aeruginosa n6p6 for synthesis of cds nanoparticles and cadmium bioadsorption. J Polym Environ 26:3097–3108

    Article  CAS  Google Scholar 

  • Chaudhary P, Fatima F, Kumar A (2020) Relevance of nanomaterials in food packaging and its advanced future prospects. J Inorg Organomet Polym 30:5180–5192

    Article  CAS  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. CRC Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Duygu DY, Erkaya IA, Erdem B (2019) Characterization of silver nanoparticle produced by Pseudopediastrum boryanum (Turpin) E. Hegewald and its antimicrobial effects on some pathogens. Int J Environ Sci Technol 16:7093–7102

    Article  CAS  Google Scholar 

  • Egamberdiyeva D (2005) Plant growth promoting rhizobacteria isolated from a calsisol in semi arid region of uzbekistan: biochemical characterization and effectiveness. J Plant Nutr Soil Sci 168:94–99

    Article  CAS  Google Scholar 

  • Farajzadeh D, Yakhchali B, Aliasgharzad N, Bashir NS, Farajzadeh M (2012) Plant growth promoting characterization of indigenous azotobacteria isolated from soils in Iran. Curr Microbiol 64:397–403

    Article  CAS  Google Scholar 

  • Fatima F, Bajpai P, Pathak N, Singh S, Priya S, Verma SR (2015) Antimicrobial and immunomodulatory efficacy of extracellularly synthesized silver and gold nanoparticles by a novel phosphate solubilizing fungus Bipolaris tetramera. BMC Microbiol 15:52

    Article  CAS  Google Scholar 

  • Fatima F, Verma SR, Bajpai P, Pathak N (2016) Extracellular mycosynthesis of silver nanoparticles and their microbicidal activity. J Glob Antimicrob Re 7:88–92

    Article  Google Scholar 

  • Fatima F, Pathak N, Verma SR, Bajpai P (2018) Toxicity and immunomodulatory efficacy of biosynthesized silver myconanosomes on pathogenic microbes and macrophage cells. Artif Cells Nanomed Biotechnol 46:1637–1645

    CAS  Google Scholar 

  • Fatima F, Siddiqui S, Khan WA (2020) Nanoparticles as novel emerging therapeutic antibacterial agents in the antibiotics resistant era. Biol Trace Elem Res 2020:1–13

    Google Scholar 

  • Fatima F, Hashim A, Anees S (2021) Efficacy of nanoparticles as nanofertilizer production: A review. Environ Sci Pollut Res Int 28:1292–1303

    Article  CAS  Google Scholar 

  • Fayaz AM, Balaji K, Kalaichelvan PT (2009) Venkatesan R. Fungal based synthesis of silver nanoparticles—An effect of temperature on the size of particles. Colloids Surf B Biointerfaces 74:123–126

    Article  CAS  Google Scholar 

  • Fraga R, Rodriguez H, Gonzalez T (2001) Transfer of the gene encoding the Nap A acid phosphatase from Morganella morganii to a Burkholderia cepacia strain. Acta Biotechnol 21:359–369

    Article  CAS  Google Scholar 

  • Geelhoed JS, Riemsdijk WHVAN, Findenegg GR (1999) Simulation of the effect of citrate exudation from roots on the plant availability of phosphate adsorbed on goethite. Eur J Soil Sci 50:379–390

    Article  CAS  Google Scholar 

  • Gericke M, Pinches A (2006a) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140

    Article  CAS  Google Scholar 

  • Gericke M, Pinches A (2006b) Microbial production of gold nanoparticles. Gold Bull 39:22–28

    Article  CAS  Google Scholar 

  • Goldstein A. H: (1994). Involvement of the Quinoprotein Glucose Dehydrogenase In The Solubilization Of Exogenous Mineral Phosphates By Gram-Negative Bacteria, Phosphate In Microorganisms: Cellular And Molecular Biology, Washington, DC, 197–203

  • Goldstein AH, Liu ST (1987a) Molecular cloning and regulation of a mineral phosphate solubilizing gene from erwinia herbicola. Biotechnology 5:72–74

    CAS  Google Scholar 

  • Gyaneshwar P, Pareka LJ, Archana G, Podle PS, Collins MD, Huston RA, Naresh KG (1999) Involvement of a phosphate starvation inducible glucose dehydrogenase in soil phosphate solubilization by enterobacter asburiae. FEMS Microbiol Lett 171:223–229

    Article  CAS  Google Scholar 

  • Halvorson HO, Keynan A, Kornberg HL (1990) Utilization of calcium phosphates for microbial growth at alkaline phosphate. Soil Biol Biochem 22:887–890

    Article  CAS  Google Scholar 

  • Han HS, Lee KD (2005) Physiological responses of soybean—inoculation of Bradyrhizobium japonicum with PGPR in saline soil conditions. Res J Agric Biol Sci 1:216–221

    Google Scholar 

  • Hulkoti NI, Taranath T (2014) Biosynthesis of nanoparticles using microbes—A review. Colloids Surf B 121:474–483

    Article  CAS  Google Scholar 

  • Ishida K, Cipriano TF, Rocha GM, Weissmüller G, Gomes F, Miranda K, Rozental S (2014) Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterization and analysis of antifungal activity against pathogenic yeasts. Mem Inst Oswaldo Cruz 109:220–228

    Article  Google Scholar 

  • Ishige T, Krause M, Bott M, Wendisch VF, Sahm H (2003) The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analy ses. J Bacteriol 185:4519–4529

    Article  CAS  Google Scholar 

  • Jalili B, Bagheri H, Azadi S (2020) Identification and salt tolerance evaluation of endophyte fungi isolates from halophyte plants. Int J Environ Sci Technol 17:3459–3466

    Article  Google Scholar 

  • Jeong JJ, Sang MK, Pathiraja D, Park B, Choi IG, Kim KD (2018) Draft genome sequence of phosphate-solubilizing Chryseobacterium sp. strain ISE14 biocontrol plant growth promoting rhizobacterium isolated from cucumber. Prokaryotes 6:12–18

    Google Scholar 

  • Jiang H, Qi P, Wang T, Wang M, Chen M, Chen N, Pan L, Chi X (2018) Isolation and characterization of halotolerant phosphate-solubilizing microorganisms from saline soils. Biotech 8:461

    Google Scholar 

  • Kadmiri IM, Chaouqui L, Azaroual SE (2018) Phosphate-solubilizing and auxin-producing rhizobacteria promote plant growth under saline conditions. Arab J Sci Eng 43:3403–3415

    Article  CAS  Google Scholar 

  • Kang SM, Radhakrishnan R, Lee IJ (2015) Bacillus amyloliquefaciens subsp. plantarum GR53, a potent biocontrol agent resists Rhizoctonia disease on Chinese cabbage through hormonal and antioxidants regulation. World J Microb Biot 31:1517–1527

    Article  CAS  Google Scholar 

  • Kaur G, Reddy M (2015) Effects of phosphate-solubilizing bacteria, rock phosphate and chemical fertilizers on maize-wheat cropping cycle and economics. Pedosphere 25:428–437

    Article  CAS  Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2001) Factor affecting auxin biosynthesis by wheat a rice rhizobacteria. Pak J Soil Sci 21:11–18

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture - a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Kim KY, Mcdonald GA, Jordan D (1997) Solubilization of hydroxyapatite by enterobacter agglomerans and cloned escherichia coli in culture medium. Bio Fertil Soils 24:347–352

    Article  CAS  Google Scholar 

  • Kim DY, Kadam A, Shinde S, Saratale RG, Patra J, Ghodake G (2018) Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities. J Sci Food Agric 98:849–864

    Article  CAS  Google Scholar 

  • Kimberley D, Schneider JR, Thiessen M, Francis Z, Keith D, Tandra R, Derek DF, Lynch H, O’Halloran IP, Henry F (2019) Options for improved phosphorus cycling and use in agriculture at the field and regional scales. J Environ Quality 48(5):1247–1264

    Article  CAS  Google Scholar 

  • Köhl J, Kolnaar R, Ravensberg WJ (2019) Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front Plant Sci 10:845

    Article  Google Scholar 

  • Kuckey (1983) Phosphate-solubilizing bacteria and fungi in various cultivated and virgin alberta soils. Canad J Soil Sci 63:671–678

    Article  Google Scholar 

  • Kumar P, Dubey RC, Maheshwari DK (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol Res 167:493–499

    Article  CAS  Google Scholar 

  • Leach AW, Mumford JD (2011) Pesticide environmental accounting: a decision-making tool estimating external costs of pesticides. J Verbrauch Lebensm 6:21–26

    Article  Google Scholar 

  • Li X, Luo L, Yang J, Li B, Yuan H (2015) Mechanisms for solubilization of various insoluble phosphates and activation of immobilized phosphates in different soils by an efficient and salinity-tolerant Aspergillus niger strain An2. Appl Biochem Biotech 175:2755–2768

    Article  CAS  Google Scholar 

  • Lin W, Lin M, Zhou H, Wu H, Li Z, Lin W (2019) The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PLoS ONE 14:e0217018

    Article  CAS  Google Scholar 

  • Liu J, Qi W, Li Q (2020) Exogenous phosphorus-solubilizing bacteria changed the rhizosphere microbial community indirectly. Biotech 10:164

    Google Scholar 

  • Makhdoumi A, Dehghani-Joybari Z, Mashreghi M (2015) A novel halo-alkali-tolerant and thermo-tolerant chitinase from Pseudoalteromonas sp. DC14 isolated from the Caspian Sea. Int J Environ Sci Technol 12:3895–3904

    Article  CAS  Google Scholar 

  • Mandal D (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492

    Article  CAS  Google Scholar 

  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB, Krishanani KK, Minhas PS (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172

    Article  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519

    Article  CAS  Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chem Bio Chem 3:461–463

    Article  CAS  Google Scholar 

  • Muratova AYU, Turkovskaya OV, Antonyuk LP, Makarov OE, Pozdnyakova LI, Ignatov VV (2005) Oil-oxidizing potential of associative rhizobacteria of the genus azospirillum. Microbiol 74:210–215

    Article  CAS  Google Scholar 

  • Mustafa S, Kabir S, Shabbir U (2019) Plant growth promoting rhizobacteria in sustainable agriculture: from theoretical to pragmatic approach. Symbiosis 78:115–123

    Article  CAS  Google Scholar 

  • Nacoon S, Jogloy S, Riddech N (2020) Interaction between phosphate solubilizing bacteria and arbuscular mycorrhizal fungi on growth promotion and tuber inulin content of helianthus tuberosus L. Sci Rep 10:4916

    Article  CAS  Google Scholar 

  • M. M. Naik , M. S. Prabhu , S. N. Samant , P. M. Naik and S. Shirodkar (2017), Thalassas: an International Journal of Marine Sciences, 33 , 73–80.

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2:293–298

    Article  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Coll Interface Sci 156:1–13

    Article  CAS  Google Scholar 

  • Nicomrat D, Tharajak J, Kanthang P (2016) Microbial comparison in synthesizing gold nanoparticles for harvesting gold in wastewater system. Appl Mech Mater 848:52–55

    Article  Google Scholar 

  • Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J of Env Res Pub Health 14(12):1504

    Article  CAS  Google Scholar 

  • Olanrewaju OS, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 33:197

    Article  CAS  Google Scholar 

  • Padrón-Rodríguez L, Arias-Mota RM, Medel-Ortíz R, de la Cruz-Elizondo Y (2020) Interaction with arbuscular mycorrhizal and phosphate solubilizer fungi in Canavalia ensiformis (Fabaceae). Botanical Sci 98:278–287

    Article  Google Scholar 

  • Panwar M, Tewari R, Nayyar H (2014) Microbial Consortium of Plant Growth-Promoting Rhizobacteria Improves the Performance of Plants Growing in Stressed Soils: An Overview. In: Khan M, Zaidi A, Musarrat J (eds) Phosphate Solubilizing Microorganisms. Springer, Cham

    Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014

    Article  Google Scholar 

  • Quan X, Jian YL, Jian-Min I, HuoYan ZHOU, ChangWen WANG, Xiao QC (2008) Enhancement of phosphorus solubility by humic substances in ferrosols. Pedosphere 18:533–538

    Article  Google Scholar 

  • Raliya R (2013) Rapid, low-cost, and ecofriendly approach her for iron nanoparticle synthesis using Aspergillus oryzae TFR9. J Nanoparticles Article ID 141274:1–4

    Google Scholar 

  • Raliya R, Biswas P, Tarafdar JC (2015) TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.) Biotechnol. Rep 5:22–26

    Google Scholar 

  • Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K (2013) Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springerplus 2:6

    Article  CAS  Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchander T, Prakasanv SR (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Protect 20:1–11

    Article  CAS  Google Scholar 

  • Rashid S, Charles TC, Glick BR (2012) Isolation and characterization of new plant growth promoting bacterial endophytes. Appl Soil Ecol 61:217–224

    Article  Google Scholar 

  • Rawat N, Sharma M, Suyal DC, Singh DK, Joshi D, Singh P, Goel R (2019) Psyhcrotolerant Bio-inoculants and Their Co-inoculation to Improve Cicer arietinum Growth and Soil Nutrient Status for Sustainable Mountain Agriculture. J Soil Sci Plant Nutr 19:639–647

    Article  CAS  Google Scholar 

  • Raza W, Yang W, Shen QR (2008) Paenibacillus Polymyxa: antibiotics, hydrolytic enzymes, and hazard assessment. J Plant Pathol 90:419–430

    CAS  Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability. Plant Physiol 156:989–996

    Article  CAS  Google Scholar 

  • Rudresh DL, Shivaprakash MK, Prasad RD (2004) Prasad: effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea (cicer aritenium L.). Appl Soil Ecol 28:139–146

    Article  Google Scholar 

  • Mona Saud AL-Ahmadi (February 21st 2019). Pesticides, Anthropogenic Activities, and the Health of Our Environment Safety, Pesticides - Use and Misuse and Their Impact in the Environment, Marcelo Larramendy and Sonia Soloneski, IntechOpen,

  • Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. Small 1:517–520

    Article  CAS  Google Scholar 

  • Seshachala U, Tallapragada P (2012) Phosphate solubilizers from the rhizosphere of Piper nigrum L. in Karnataka. India Chil J Agric Res 72:397–403

    Article  Google Scholar 

  • Shao J, Xu Z, Zhang N, Shen Q, Zhang R (2015) Erratum to: contribution of indole-3-acetic acid in the plant growth promotion by the rhizospheric strain Bacillus amyloliquefaciens, SQR9. Biol Fertil Soils 51:331–331

    Article  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2:587

    Article  CAS  Google Scholar 

  • Shulse CN, Chovatia M, Agosto C, Wang G, Hamilton M, Deutsch S, Yoshikuni Y, Blow MJ (2019) Engineered root bacteria release plant-available phosphate from phytate. Appl Environ Microbiol 85:01210–01219

    Article  Google Scholar 

  • Singh A, Prasad SM (2017) Nanotechnology and its role in agro-ecosystem: a strategic perspective. Int J Environ Sci Technol 14:2277–2300

    Article  Google Scholar 

  • Singh B, Satyanarayana T (2011) Microbial phytases in phosphorus acquisition and plant growth promotion. Physiol Mol Biol Plants 17:93–103

    Article  CAS  Google Scholar 

  • Souad Z, Ahmed AB, Lakhdar B (2018) Efficacy of Bacillus subtilis and Trichoderma harzianum combination on chickpea Fusarium wilt caused by F. oxysporum f. sp. ciceris. Arch Phytopathol Plant Protect 51:217–226

    Article  Google Scholar 

  • Srivastava N, Srivastava M, Mishra PK, Ramteke PW (2016) Application of ZnO nanoparticles for improving the thermal and ph stability of crude cellulase obtained from Aspergillus fumigatus AA001. Front Microbiol 7:514

    Article  Google Scholar 

  • Suárez-Moreno ZR, Vinchira-Villarraga DM, Vergara-Morales DI, Castellanos L, Ramos FA, Guarnaccia C, Degrassi G, Venturi V, Moreno-Sarmiento N (2019) Plant-growth promotion and biocontrol properties of three streptomyces spp isolates to control bacterial rice pathogens. Front Microbiol 10:290

    Article  Google Scholar 

  • Suleman M, Yasmin S, Rasul M, Yahya M, Atta BM, Mirza MS (2018) Phosphate solubilizing bacteria with glucose dehydrogenase gene for phosphorus uptake and beneficial effects on wheat. PloS one 13(9):e0204408

    Article  CAS  Google Scholar 

  • Surange S, Wollum AG, Kumar N (1997) Characterization of Rhizobium from root nodules of leguminous trees growing in alkaline soils. Can J Microbiol 43:891–894

    Article  CAS  Google Scholar 

  • Syed A, Ahmad A (2012) Extracellular biosynthesis of platinum nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 97:27–31

    Article  CAS  Google Scholar 

  • Tahir M, Naeem MA, Shahid M, Khalid U, Farooq ABU, Ahmad N, Waqar A (2020) Inoculation of pqqE gene inhabiting Pantoea and Pseudomonas strains improves the growth and grain yield of wheat with a reduced amount of chemical fertilizer. J Appl Microbiol 129:575–589

    Article  CAS  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6:257–262

    Article  CAS  Google Scholar 

  • Thant S, Aung NN (2018) Phosphate solubilization of Bacillus megaterium isolated from non-saline soils under salt stressed conditions. J Bacteriol Mycol Open Access 6:335–341

    Google Scholar 

  • Trolove SN, Hedley MJ, Kirk GJD, Bolan NS, Loganathan P (2003) Progress in selected areas of rhizosphere research on p acquisition. Aust J Soil Res 41:471–499

    Article  Google Scholar 

  • Ullah A, Mushtaq H, Ali U (2018) Screening, isolation, biochemical and plant growth promoting characterization of endophytic bacteria. Microbiol Curr Res 2:62–68

    Article  CAS  Google Scholar 

  • Venkateswarlu B, Rao AV, Raina P, Ahmad N (1984) Evaluation of phosphorus solubilization by microorganisms isolated from arid soil. J Indian Soc Soil Sci 32:273–277

    CAS  Google Scholar 

  • Vigneshwaran N (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413–1418

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Synergistic effect of the inoculation with nitrogen-fixing and phosphate-solubilizing rhizobacteria on performance of field-grown chickpea. J Plant Nutr Soil Sc 170:283–287

    Article  CAS  Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate solubilizing fungi. Adv Agron 69:99–151

    Article  CAS  Google Scholar 

  • Zaidi A, Ahmad E, Khan MS (2014) Role of Phosphate-Solubilizing Microbes in the Management of Plant Diseases. In: Khan M, Zaidi A, Musarrat J (eds) Phosphate Solubilizing Microorganisms. Springer, Cham

    Google Scholar 

  • Zhang F (2016) Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean. Plant Physiol Biochem 100:64–74

    Article  CAS  Google Scholar 

  • Zhang Y, Chen FS, Wu XQ, Luan FG, Zhang LP, Fang XM (2018) Isolation and characterization of two phosphate-solubilizing fungi from rhizosphere soil of moso bamboo and their functional capacities when exposed to different phosphorus sources and pH environments. PLoS ONE 13:e0199625

    Article  CAS  Google Scholar 

  • Zhu FG, Qu L, Hong X, Sun X (2011) Isolation and characterization of a phosphate solubilizing halophilic bacterium Kushneria sp. Ycwa18 from DaQiao salt Ern on the coast of the yellow sea of china. Evid Based Complement Alternat Med 615032:1–6

    Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to Chancellor, Integral University for his support and encouragement.

Funding

No funding is received to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Fatima.

Ethics declarations

Conflict of interest

The authors declares that they have no competing of interest.

Additional information

Communicated by Samareh Mirkia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatima, F., Ahmad, M.M., Verma, S.R. et al. Relevance of phosphate solubilizing microbes in sustainable crop production: a review. Int. J. Environ. Sci. Technol. 19, 9283–9296 (2022). https://doi.org/10.1007/s13762-021-03425-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-021-03425-9

Keywords

Navigation