Skip to main content
Log in

Removal of cadmium (II) from aqueous solution and natural water samples using polyurethane foam/organobentonite/iron oxide nanocomposite adsorbent

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

A novel polyurethane foam/organobentonite/iron oxide nanocomposite adsorbent was successfully prepared via in situ polymerization of toluene diisocyanate and polyol in presence of 5 wt% organobentonite/iron oxide. The obtained nanocomposite was characterized in detail, and the results revealed that the clay layers are exfoliated and/or intercalated in the polymer matrix forming a nanocomposite structure. The application of the prepared nanocomposite for adsorption of cadmium ions from aqueous solution was tested as a function of various experimental parameters using batch procedures. Adsorptive removal of Cd(II) onto the nanocomposite attained maximum at adsorbent content 1.5 g/L, pH 6, and the equilibrium was established within 60 min. Kinetic studies showed that the experimental data fit very well to pseudo-second-order model, and the adsorption process proceeds through three steps. It was found that external liquid film and intraparticle diffusion steps deeply affect the rate of Cd2+ ions adsorption onto the synthesized nanocomposite. Langmuir isotherm model fitted the adsorption data better than Freundlich with a maximum adsorption capacity (q m) for Cd(II) equal to 78 mg/g under the specified experimental conditions. The synthesized nanocomposite afforded effective extraction for Cd2+ ions from natural water samples and excellent reusability feature. This study declares the potential efficiency of a new clay/polymer nanocomposite as alternative for wastewater remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agha MA, Ferrell RE, Hart GF, El Ghar MSA, Abdel-Motelib A (2015) Physical properties and Na-activation of Egyptian bentonitic clays for appraisal of industrial applications. Appl Clay Sci 131:74–83

    Article  Google Scholar 

  • Atia AA, Donia AM, Elwakeel KZ (2005) Adsorption behaviour of non-transition metal ions on a synthetic chelating resin bearing iminoacetate functions. Sep Purif Technol 43:43–48

    Article  CAS  Google Scholar 

  • Atia AA, Donia AM, Yousif AM (2008) Removal of some hazardous heavy metals from aqueous solution using magnetic chelating resin with iminodiacetate functionality. Sep Purif Technol 61:348–357

    Article  CAS  Google Scholar 

  • Azeem SA, Arafa W, El-Shahat M (2010) Synthesis and application of alizarin complexone functionalized polyurethane foam: preconcentration/separation of metal ions from tap water and human urine. J Hazard Mater 182:286–294

    Article  CAS  Google Scholar 

  • Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33:2469–2479

    Article  CAS  Google Scholar 

  • Bergaya F, Lagaly G (2007) Clay mineral properties responsible for CPN performance. CMS workshop lectures. Clay Minerals Society, Chantilly, p 61

    Google Scholar 

  • Block KA, Trusiak A, Katz A, Alimova A, Wei H, Gottlieb P, Steiner JC (2015) Exfoliation and intercalation of montmorillonite by small peptides. Appl Clay Sci 107:173–181

    Article  CAS  Google Scholar 

  • Burham N (2009) Separation and preconcentration system for lead and cadmium determination in natural samples using 2-aminoacetylthiophenol modified polyurethane foam. Desalination 249:1199–1205

    Article  CAS  Google Scholar 

  • Burham N, Sayed M (2016) Adsorption behavior of Cd2+ and Zn2+onto natural egyptian bentonitic clay. Minerals 6:129

    Article  Google Scholar 

  • Chen Y-G, Ye W-M, Yang X-M, Deng F-Y, He Y (2011) Effect of contact time, pH, and ionic strength on Cd(II) adsorption from aqueous solution onto bentonite from Gaomiaozi, China. Environ Earth Sci 64:329–336

    Article  CAS  Google Scholar 

  • Cottet L, Almeida C, Naidek N, Viante M, Lopes M, Debacher N (2014) Adsorption characteristics of montmorillonite clay modified with iron oxide with respect to methylene blue in aqueous media. Appl Clay Sci 95:25–31

    Article  CAS  Google Scholar 

  • Dong T, Yang L, Zhu M, Liu Z, Sun X, Yu J, Liu H (2015) Removal of cadmium (II) from wastewater with gas-assisted magnetic separation. Chem Eng J 280:426–432

    Article  CAS  Google Scholar 

  • Foo K, Hameed B (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

  • Galbeiro R, Garcia S, Gaubeur I (2014) A green and efficient procedure for the preconcentration and determination of cadmium, nickel and zinc from freshwater, hemodialysis solutions and tuna fish samples by cloud point extraction and flame atomic absorption spectrometry. J Trace Elem Med Biol 28:160–165

    Article  CAS  Google Scholar 

  • Hebbar RS, Isloor AM, Ananda K, Ismail A (2016) Fabrication of polydopamine functionalized halloysite nanotube/polyetherimide membranes for heavy metal removal. J Mater Chem A 4:764–774

    Article  CAS  Google Scholar 

  • Jović-Jovičić N, Milutinović-Nikolić A, Gržetić I, Jovanović D (2008) Organobentonite as efficient textile dye sorbent. Chem Eng Technol 31:567–574

    Article  Google Scholar 

  • Karapinar N, Donat R (2009) Adsorption behaviour of Cu2+ and Cd2+ onto natural bentonite. Desalination 249:123–129

    Article  CAS  Google Scholar 

  • Khairy M, El-Safty SA, Shenashen M (2014) Environmental remediation and monitoring of cadmium. TrAC Trends Anal Chem 62:56–68

    Article  CAS  Google Scholar 

  • Khudyakov IV, Zopf DR, Turro NJ (2009) Polyurethane nanocomposites. Des Monomers Polym 12:279–290

    Article  CAS  Google Scholar 

  • Kocaoba S (2007) Comparison of Amberlite IR 120 and dolomite’s performances for removal of heavy metals. J Hazard Mater 147:488–496

    Article  CAS  Google Scholar 

  • Kurko SV, Matović LL (2015) Simultaneous removal of Pb2+, Cu2+, Zn2+ and Cd2+ from highly acidic solutions using mechanochemically synthesized montmorillonite–kaolinite/TiO2 composite. Appl Clay Sci 103:20–27

    Article  Google Scholar 

  • Lin X, Burns RC, Lawrance GA (2005) Heavy metals in wastewater: the effect of electrolyte composition on the precipitation of cadmium (II) using lime and magnesia. Water Air Soil Pollut 165:131–152

    Article  CAS  Google Scholar 

  • Liu R, Liu F, Hu C, He Z, Liu H, Qu J (2015) Simultaneous removal of Cd(II) and Sb (V) by Fe–Mn binary oxide: positive effects of Cd(II) on Sb (V) adsorption. J Hazard Mater 300:847–854

    Article  CAS  Google Scholar 

  • Luo X, Lei X, Cai N, Xie X, Xue Y, Yu F (2016) Removal of heavy metal ions from water by magnetic cellulose-based beads with embedded chemically modified magnetite nanoparticles and activated carbon. ACS Sustain Chem Eng 4(7):3960–3969

    Article  CAS  Google Scholar 

  • Ma L, Xi Y, He H, Ayoko GA, Zhu R, Zhu J (2016) Efficiency of Fe–montmorillonite on the removal of rhodamine B and hexavalent chromium from aqueous solution. Appl Clay Sci 120:9–15

    Article  CAS  Google Scholar 

  • Machida M, Fotoohi B, Amamo Y, Ohba T, Kanoh H, Mercier L (2012) Cadmium (II) adsorption using functional mesoporous silica and activated carbon. J Hazard Mater 221:220–227

    Article  Google Scholar 

  • Mahmud HNME, Huq AO, BINTI YAHYA R (2016) The removal of heavy metal ions from wastewater/aqueous solution using polypyrrole-based adsorbents: a review. RSC Adv 6:14778–14791

    Article  Google Scholar 

  • Marder L, Bernardes AM, Ferreira JZ (2004) Cadmium electroplating wastewater treatment using a laboratory-scale electrodialysis system. Sep Purif Technol 37:247–255

    Article  CAS  Google Scholar 

  • Oliveira LC, Rios RV, Fabris JD, Sapag K, Garg VK, Lago RM (2003) Clay–iron oxide magnetic composites for the adsorption of contaminants in water. Appl Clay Sci 22:169–177

    Article  CAS  Google Scholar 

  • Perez-Aguilar NV, Diaz-Flores PE, Rangel-Mendez JR (2011) The adsorption kinetics of cadmium by three different types of carbon nanotubes. J Colloid Interface Sci 364:279–287

    Article  CAS  Google Scholar 

  • Qiu H, Lv L, Pan B-C, Zhang Q-J, Zhang W-M, Zhang Q-X (2009) Critical review in adsorption kinetic models. J Zhejiang Univ Sci A 10:716–724

    Article  CAS  Google Scholar 

  • Ranđelović M, Purenović M, Matović B, Zarubica A, Momčilović M, Purenović J (2014) Structural, textural and adsorption characteristics of bentonite-based composite. Microporous Mesoporous Mater 195:67–74

    Article  Google Scholar 

  • Setshedi KZ, Bhaumik M, Songwane S, Onyango MS, Maity A (2013) Exfoliated polypyrrole-organically modified montmorillonite clay nanocomposite as a potential adsorbent for Cr(VI) removal. Chem Eng J 222:186–197

    Article  CAS  Google Scholar 

  • Shah LA, DA SILVA VALENZUELA MDG, EHSAN AM, DíAZ FRV, KHATTAK NS (2013) Characterization of Pakistani purified bentonite suitable for possible pharmaceutical application. Appl Clay Sci 83:50–55

    Article  Google Scholar 

  • Wang X, Yang L, Zhang J, Wang C, Li Q (2014) Preparation and characterization of chitosan–poly (vinyl alcohol)/bentonite nanocomposites for adsorption of Hg(II) ions. Chem Eng J 251:404–412

    Article  CAS  Google Scholar 

  • Wu L, Ye Y, Liu F, Tan C, Liu H, Wang S, Wang J, Yi W, Wu W (2013) Organo-bentonite-Fe3 O4 poly (sodium acrylate) magnetic superabsorbent nanocomposite: synthesis, characterization, and Thorium (IV) adsorption. Appl Clay Sci 83:405–414

    Article  Google Scholar 

  • Wu S, Zhang K, Wang X, Jia Y, Sun B, Luo T, Meng F, Jin Z, Lin D, Shen W (2015) Enhanced adsorption of cadmium ions by 3D sulfonated reduced graphene oxide. Chem Eng J 262:1292–1302

    Article  CAS  Google Scholar 

  • Yukselen Y, Kaya A (2008) Suitability of the methylene blue test for surface area, cation exchange capacity and swell potential determination of clayey soils. Eng Geol 102:38–45

    Article  Google Scholar 

  • Zhao G, Zhang H, Fan Q, Ren X, Li J, Chen Y, Wang X (2010) Sorption of copper (II) onto super-adsorbent of bentonite–polyacrylamide composites. J Hazard Mater 173:661–668

    Article  CAS  Google Scholar 

  • Zhao F, Tang WZ, Zhao D, Meng Y, Yin D, SILLANPää M (2014) Adsorption kinetics, isotherms and mechanisms of Cd(II), Pb(II), Co(II) and Ni(II) by a modified magnetic polyacrylamide microcomposite adsorbent. J Water Process Eng 4:47–57

    Article  Google Scholar 

  • Zhou L, Li G, An T, Li Y (2010) Synthesis and characterization of novel magnetic Fe3O4/polyurethane foam composite applied to the carrier of immobilized microorganisms for wastewater treatment. Res Chem Intermed 36:277–288

    Article  CAS  Google Scholar 

  • Zhu J, He H, Guo J, Yang D, Xie X (2003) Arrangement models of alkylammonium cations in the interlayer of HDTMA + pillared montmorillonites. Chin Sci Bull 48:368–372

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to declare that this work was conducted at the inorganic chemistry laboratory, Faculty of Science, Fayoum University, Fayoum, Egypt and they didn’t receive any specific grant from funding agencies in the public, commercial, or not for profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Burham.

Additional information

Editorial responsibility: Abhishek RoyChowdhury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayed, M., Burham, N. Removal of cadmium (II) from aqueous solution and natural water samples using polyurethane foam/organobentonite/iron oxide nanocomposite adsorbent. Int. J. Environ. Sci. Technol. 15, 105–118 (2018). https://doi.org/10.1007/s13762-017-1369-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1369-0

Keywords

Navigation