Skip to main content
Log in

Combined effects of particulates dispersion and elemental analysis in desert plants: a modeling tool to air pollution

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Multidimensional assessment of air pollution was carried out on trace metals in particulates, desert plant parts and soil collected from the six sites to validate air pollution tolerance index, translocation and bioaccumulation factors. A map indicating the sampled sites was superimposed on the Disper 5.2 software graphical interface to track the particulate dispersion route during the summer and winter seasons. This study showed site-wise orientation of particulates dispersed in the ambient air. Observations indicated the high concentrations of dispersed coarse > fine > ultra-fine particulates in trace metals analyzed from selected desert plants and in the soil especially during winter than in the summer seasons. High air pollution tolerance index was observed in the sequence of Calatropis gigantean > Portulaca oleracea > Citrullus collocynthis > Rumex vesicarius > Bienertia sinuspersici > Tribulus terrestris. Assessment of translocation and bioaccumulation factors labeled these desert plants as hyper-accumulators. The synergistic effect of the translocation and bioaccumulation factor in the various plants and the pollution levels for a given geographical location provides insight management to mitigate air pollution and landscape designers to grow tolerant species and protect sensitive plants from air pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abida B, Harikrishna S (2010) Evaluation of some tree species to absorb air pollutants in three industrial locations of South Bengaluru India. E-J Chem 7(S1):51–56. Academic Journal 57956745

  • Agbaire PO (2009) Air pollution tolerance indices (APTI) of some plants around Erhoike-Kokori oil exploration site of Delta state, Nigeria. Int J Phys Sci 4(6):366–368. ISSN: 1992-1950

  • Bader Al-Azmi N, Nassehi V, Khan AR (2008) Comparative assessment of ambient air quality in Rabia area for the years 2001 and 2004 in the State of Kuwait. Am J Environ Sci 4(1):50–62. doi:10.3844/ajessp.2008.50.62

    Article  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyper accumulate metallic elements-a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126. ISBN-ISSN: 0269-7572

  • Briggs GA (1979) Some recent analyses of plume rise observations. In: Proceedings of the second international clean air congress, Academic Press, New York

  • Brown KW, Bouhamra W, Lamoureux DP, Evans JS, Koutrakis P (2008) Characterization of particulate matter for three sites in Kuwait. J Air Waste Manag Assoc 58(8):994–1003

    Article  CAS  Google Scholar 

  • Bu-Olayan AH, Thomas BV (2014) Assessment of the ultra-mercury levels in selected desert plants. Int J Environ Sci Technol 11(5):1413–1420. doi:10.1007/s13762-013-0324-y

    Article  CAS  Google Scholar 

  • Cheng FY, Burkey KO, Robinson JM, Booker FL (2007) Leaf extracellular environment ascorbate in relation to O3 tolerance of two soya bean cultivars. Environ Pollut 150:355–362. doi:10.1016/j.envpol.2007.01.022

    Article  CAS  Google Scholar 

  • Conti ME, Tudino M, Stripeikis J, Cecchetti G (2004) Heavy metal accumulation in the Lichen Everina prunastri transplanted at urban, rural and industrial sites in Central Italy. J Atmos Chem 49(1–3):83–94. ISSN: 0167-7764

  • Cyren MR, Sanghamitra M, Maria DG, Jose RPV, Jorge LGT (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498. doi:10.1021/jf104517j

    Article  Google Scholar 

  • Dohmen GP, Loppers A, Langebartels C (1990) Biochemical response of Norway Spruce (Picea Abies (L) Karst) towards 14-month exposure to ozone and acid mist, effect on amino acid, glutathione and polyamine titers. Environ Pollut 64:375–383. doi:10.1016/0269-7491(90)90059-L

    Article  CAS  Google Scholar 

  • Fismes J, Perrin-Ganier C, Empereur-Bissonnet P, Morel JL (2002) Soil-to-root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils. J Environ Qual 31:1649–1656. doi:10.2134/jeq2002.1649

    Article  CAS  Google Scholar 

  • Joshi P, Swami A (2007) Physiological responses of some tree species under roadsides automobile pollution stress around city of Haridwar, India. The Environmentalists 27:365–374. doi:10.1007/s10669-007-9049-0

    Article  Google Scholar 

  • Jyothi SJ, Jaya DS (2010) Evaluation of air pollution tolerance index of selected plant species along roadsides in Thiruvanthapuram, Kerala. J Environ Biol 31:379–386

    CAS  Google Scholar 

  • Keane B, Collier MH, Shann JR, Rogstad SH (2001) Metal contents of dandelion (Taraxzcum officinale) leaves in relation to soil contamination and airborne particulate matter. Sci Total Environ 281:63–78. doi:10.1016/S0048-9697(01)00836-1

    Article  CAS  Google Scholar 

  • Liu Y, Ding H (2008) Variation in air pollution tolerance index of plants near a steel factory implication for landscape-plant species selection for industrial areas. WSEAS Trans Environ Dev 4:24–32. ISSN: 1790-5079

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kenelly ED (2001) A fern that hyper accumulates arsenic. Nature 409:579–582. doi:10.1038/35054664

    Article  CAS  Google Scholar 

  • Ninave SY, Chaudri PR, Gajghate DG, Tarar JL (2001) Foliar biochemical features of plants as indicators of air pollution. Bull Environ Contam Toxicol 67:133–140. doi:10.1007/s001280101

    Article  CAS  Google Scholar 

  • Pasquill F (1976) Atmospheric dispersion parameters in Gaussian Plume Modelling. Part II: possible requirements for change in the turner workbook values. EPA-600/4-76-030b, USEPA, research triangle park, North Carolina, 27711

  • Press W, Flannery B, Teukolsky S, Vetterling W (1986) Numerical recipes. Cambridge University Press, New York

    Google Scholar 

  • Rahimi A, Hosseini MS, Pooryoosef M, Fateh I (2010) Variation of leaf water potential, relative water content and SPAD under gradual drought stress and stress recovery in two medicinal species of Plantago ovata and P. psyllium. J Plant Ecophysiol 2(2):53–60. ISSN: 2008-7861

  • Reem SE, John GZ, El-Rifaia MA, Hisham ME (2010) An assessment of the air pollution data from two monitoring stations in Kuwait. Toxicol Environ Chem 92(4):655–668. doi:10.1080/02772240903008609

    Article  Google Scholar 

  • Reinier MM, Martina GV, Willie JGMP (2011) Metals and metalloids in terrestrial systems: bioaccumulation, bio-magnification and subsequent adverse effects (Chapter 3) In: Ecological Impacts toxic chemistry. Bentham Science Publishers Ltd, pp 43–62. eISBN: 978-1-60805-121-2

  • Seyyednejad SM, Koochak H (2013) Some morphological and biochemical responses due to industrial air pollution in Prosopis juliflora (Swartz) DC plant. J Biol Sci 8(18):1968–1974. doi:10.5897/AJAR10.652

    Google Scholar 

  • Seyyednejad SM, Majdian K, Koochak H, Nikeneland M (2011) Air pollution tolerance indices of some plants around industrial zone in South of Iran. Asian J Biol Sci 4(3):300–305. doi:10.3923/ajbs.2011.300.305

    Article  Google Scholar 

  • Smirnoff N (1996) The functions and metabolism of ascorbic acid in plants. Ann Bot 78(6):661–669. doi:10.1006/anbo.1996.0175

    Article  CAS  Google Scholar 

  • Takanori K, Naoko KN (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152. doi:10.1146/annurev-arplant-042811-105522

    Article  Google Scholar 

  • Ukpebor EE, Ukpebor JE, Aigbokhan E, Goji I, Onojeghuo AO, Okonkwo AC (2010) Delonix regia and Casuarina equisetifolia as passive bio monitors and as bio accumulators of atmospheric trace metals. J Environ Sci (China) 22(7):1073–1079. doi:10.1016/S1001-0742(09)60219-9

    Article  CAS  Google Scholar 

  • USEPA (1999) Compendium of methods (IO-3.5) for the determination of inorganic compounds in ambient air (EPA/625/R-96/010a)

  • Wang X, Shan X, Zhang S, Wen B (2004) A model for evaluation of the phyto availability of trace elements to vegetables under the field conditions. Chemos 55:811–822. doi:10.1016/j.chemosphere.2003.12.003

    Article  CAS  Google Scholar 

  • Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368(2–3):456–464. doi:10.1016/j.scitotenv2006.01.016

    Article  CAS  Google Scholar 

  • Youn-Joo A (2004) Soil ecotoxicity assessment using cadmium sensitive plants. Environ Pollut 127(1):21–26. doi:10.1016/S0269-7491(03)00263-X

    Article  Google Scholar 

  • Yu-Hong S, McGrath SP, Zhao FJ (2010) Rice is more efficient in arsenite uptake and translocation than wheat and barley. Plant Soil 328(1–2):27–34. doi:10.1007/s11104-009-0074-2

    Google Scholar 

  • Zhuang P, Yang QW, Wang HB, Shu WS (2007) Phyto-extraction of heavy metals by eight plant species in the field. Water Air Soil Pollut 184:235–242. doi:10.1007/s11270-007-9412-2

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Appreciation expressed to the Kuwait Foundation for the Advancement of Sciences (KFAS) for their invaluable financial support to the projects Grants No. KFAS-2012-1401-04 and KFAS-2013-1401-02. Acknowledgment extended to the Research Administration, Kuwait University, for their technical support. We thank Dr. K.T. Mathews, Curator, Department of Biological Sciences, Kuwait University, for identifying the desert plants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Thomas.

Ethics declarations

Conflict of interest

The authors have no conflict of interest in the technicalities of this investigation.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu-Olayan, A.H., Thomas, B.V. Combined effects of particulates dispersion and elemental analysis in desert plants: a modeling tool to air pollution. Int. J. Environ. Sci. Technol. 13, 1299–1310 (2016). https://doi.org/10.1007/s13762-016-0968-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-0968-5

Keywords

Navigation