Skip to main content

Advertisement

Log in

Effects of sea level rise on the salinity of Bahmanshir estuary

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Bahmanshir estuary, which is connected to the Persian Gulf, is one of the most important water resources in region. In this study, saltwater intrusion due to possible sea level rise in the Bahmanshir estuary was investigated. A one-dimensional hydrodynamic and water quality model was used for the simulation of the salinity intrusion and associated water quality, with measured field data being used for model calibration and verification. The verified model was then used as a virtual laboratory to study the effects of different parameters on the salinity intrusion. A coupled gas-cycle/climate model was used to generate the climate change scenarios in the studied area that showed sea level rises varying from 30 to 90 cm for 2100. The models were then combined to assess the impact of future sea level rise on the salinity distribution in the Bahmanshir estuary. Using important dimensionless numbers, a dimensionally homogenous equation was subsequently developed for the prediction of the salinity intrusion length, showing that the salinity intrusion length is inversely correlated with the discharge and directly with the sea level rise. In addition, the magnitude and frequency of the salinity standard violations at the pump station were predicted for 2100, showing that the salinity violations under climate change effects can increase to 45 % of the times at this location. This reveals the importance of this type of approach for considering future infrastructure management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbaspour M, Javid AH, Mirbagheri SA, Givi FA, Moghimi P (2012) Investigation of lake drying attributed to climate change. Int J Environ Sci Technol 9(2):257–266

    Article  Google Scholar 

  • Abbott MB, Ionescu F (1967) On the numerical computation of nearly-horizontal flows. J Hydraul Res 5:97–117

    Article  Google Scholar 

  • Bear J, Cheng S, Sorek D, Ouazar I, Herrera EDS (1999) Seawater intrusion in coastal aquifers—concepts, methods and practices. Kluwer Academic Publishers, Dordrecht, pp 152–171

    Book  Google Scholar 

  • Biati A, Karbassi AR, Hassani AH, Monavari SM, Moattar F (2010) Role of metal species in flocculation rate during estuarine mixing. Int J Environ Sci Technol 7(2):327–336

    Article  CAS  Google Scholar 

  • Bhuiyan JAN, Dutta D (2012) Assessing impacts of sea level rise on river salinity in the Gorai river network, Bangladesh. Estuar Coast Shelf Sci 96:219–227

    Article  CAS  Google Scholar 

  • Church JA, White NJ (2006) A 20th century acceleration in global sea level rise. Geophys Res Lett 33:1–4

    Article  Google Scholar 

  • Conrads PA, Roehl EA, Daamen RC et al (2010) Estimating salinity intrusion effects due to climate change on the lower Savannah river estuary. Paper presented at the South Carolina environmental Conference, North Myrtle Beach, South Carolina, Mar 2010

  • DHI Software Group (2009) MIKE 11 reference manual. Danish Hydraulic Institute, Denmark

    Google Scholar 

  • Etemad-Shahidi A, Imberger J (2002) Anatomy of turbulence in a narrow and strongly stratified estuary. J Geophysical Res Ocean 107:701–716

    Google Scholar 

  • Etemad-Shahidi A, Parsa J, Hajiani M (2009). Salinity intrusion length: comparison of different approaches. Proceedings of the Institution of Civil Engineers–Maritime Engineering 164:33–42

  • Etemad-Shahidi A, Afshar A, Alikia H, Moshfeghi H (2009b) Total dissolved solid modeling; Karkheh reservoir case example. Int J Environ Res 3:671–680

    CAS  Google Scholar 

  • Etemad-Shahidi A, Shahkolahi A, Liu WC (2010) Modeling of hydrodynamics and cohesive sediment transport in an estuarine system: case study in Danshui river. Environ Model Assess 15:261–271

    Article  Google Scholar 

  • Etemad-Shahidi A, Parsa J, Hajiani M (2011) Salinity intrusion length: comparison of different approaches. PICE Marit Eng 164:32–42

    Google Scholar 

  • Etemad-Shahidi A, Taghipour M (2012) Predicting longitudinal dispersion coefficient in natural streams using M5’ model tree, ASCE. J Hydraul Eng 138:542–554

    Article  Google Scholar 

  • Etemad-Shahidi A, Pirnia M, Moshfeghi H, Lemckert C (2014) Investigation of hydraulics transport time scales within the Arvand River estuary. Hydrol Process. doi:10.1002/hyp.10095

    Google Scholar 

  • Harlman DRF (1966) Salinity intrusion in estuaries. In: Ippen AT (ed) Estuary and coastline hydrodynamics. McGraw-Hill, New York, pp 598–629

    Google Scholar 

  • Hong B, Shen J (2012) Responses of estuarine salinity and transport processes to potential future sea-level rise in the Chesapeake Bay. Estuar Coast Shelf Sci 104–105:33–45

    Article  Google Scholar 

  • Hulme M, Raper SCB, Wigley TML (1995) An integrated framework to address climate change (ESCAPE) and further developments of the global and regional climate modules (MAGICC). Energy Policy 23:347–356

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007. The fourth assessment report (AR4) of the United Nations Intergovernmental Panel on Climate Change (IPCC)

  • Ippen AT (1966) Estuary and coastline hydrodynamics. McGraw-Hill, New York, pp 385–401

    Google Scholar 

  • Kont A, Jaagus J, Aunap R (2003) Climate change scenarios and the effect of sea-level rise for Estonia. Glob Planet Change 36:1–15

    Article  Google Scholar 

  • Legget J, Pepper WJ, Swart RJ (1992) Emission scenarios for the IPCC: an update. In: Houghton JT, Callander BA, Varney SK (eds) Climate change 1992: the supplementary report to the IPCC scientific assessment. Cambridge University Press, Cambridge, pp 75–95

    Google Scholar 

  • Liu WC, Chen WB, Hsu M-H (2011) Influences of discharge reductions on salt water intrusion and residual circulation in Danshuei River. J Mar Sci Technol 19:596–606

    Google Scholar 

  • Liu WC, Chen W-B, Chnag YP (2012) Modeling the transport and distribution of lead in tidal Keelung River estuary. Environ Earth Sci 65:39–47

    Article  CAS  Google Scholar 

  • Liu WC, Liu HM (2014) Assessing the impacts of sea level rise on salinity intrusion and transport time scales in a tidal estuary, Taiwan. Water 6:324–344

    Article  Google Scholar 

  • Mahab-Sweco (1976) Abadan Island and Khorramshahr water supply and irrigation project hydraulic condition and salt water mathematical model studies. Khuzestan Water and Power Organization, Technical Report, 184p, Iran

  • Monismith S, Kimmerer W, Burau J, Stacey M (2002) Structure and flow-induced variability of the subtidal salinity field in Northern San Francisco Bay. J Phys Oceanogr 32:3003–3019

    Article  Google Scholar 

  • Oey L (1984) On steady salinity distribution and circulation in partially mixed and well mixed estuaries. J Phys Oceanogr 32:629–645

    Article  Google Scholar 

  • Parsa J, Etemad-Shahidi A, Hosseiny S, Yeganeh-Bakhtiary A (2007) Evaluation of computer and empirical models for prediction of salinity intrusion in the Bahmanshir estuary. J Coast Res Special Issue 50:658–662

    Google Scholar 

  • Parsa J, Etemad-Shahidi A, Jabbari E (2005) On the salinity intrusion empirical models in estuaries and their application in the Bahmanshir estuary. XXXI IAHR Conference (Seoul, Korea) 4553–4560

  • Parsa J, Etemad-Shahidi A (2010) Prediction of tidal excursion length in estuaries due to the environmental changes. Int J Environ Sci Technol 7(4):675–686

    Article  Google Scholar 

  • Parsa J, Etemad-Shahidi A (2011) An empirical model for salinity intrusion in alluvial estuaries. Ocean Dyn 61:1619–1628

    Article  Google Scholar 

  • Pfeffer WT, Harper JT, O’Neel S (2008) Kinematic constrains on glacier contributions to 21st-century sea-level rise. Science 321:1340–1343

    Article  CAS  Google Scholar 

  • Prandle D (2004) Saline intrusion in partially mixed estuaries. Estuar Coast Shelf Sci 59:385–397

    Article  CAS  Google Scholar 

  • Rahmstorf S (2007) A semi-empirical approach to projecting future sea level rise. Science 315:368–370

    Article  CAS  Google Scholar 

  • Rice KC, Hong B, Shen J (2012) Assessment of salinity intrusion in the James and Chickahominy Rivers as a result of simulated sea level rise in Chesapeake Bay, East Coast, USA. J Environ Manag 111:61–69

    Article  CAS  Google Scholar 

  • Roshan GhR, Ranjbar F, Orosa JA (2010) Simulation of global warming effect on outdoor thermal comfort conditions. Int J Environ Sci Technol 7(3):571–580

    Article  Google Scholar 

  • Rotmans J, Hulme M, Downing TE (1994) Climate change implications for Europe: an application of the ESCAPE model. Glob Environ Change 4:97–124

    Article  Google Scholar 

  • Sazeh-Pardazi (1992) Salinity intrusion in Bahmanshir estuary. Technical Report 158p, Iran

  • Sinha PC, Rao YR, Dube SK, Murty TS (1997) Effect of sea level rise on tidal circulation in Hooghly Estuary, Bay of Bengal. Mar Geod 20:341–366

    Article  Google Scholar 

  • Shirdeli A, Shafaee M, Shafaei M (1998) Optimising salinity control structure of Bahmanshir River. Proceedings of the 3rd International Conference on Coasts, Ports and Marine Structures ICOPMAS (Tehran, Iran), 415–430

  • Van der Burgh P (1972). Ontwikkeling van een methods voor het voorspellen van Zoutverde Lingen in estuaria, Kanalen en Zeeen. Rijkswaterstaat Rapport, 10–72

  • Van der Tuin H (1991) Guidelines on the study of seawater intrusion into rivers. Prepared for the International Hydrological Programme by the Working Group of Project 4.4b (IHP-III), UNESCO

  • Wigley TML (2008). MAGICC/SCENGEN 5.3: USER MANUAL (version 2). NCAR, Boulder, CO

  • Zahed F, Etemad-Shahidi A, Jabbari E (2008) Modeling of salinity intrusion under different hydrological condition in Arvand River Estuary. Can J Civ Eng 35:1476–1480

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the DHI for its invaluable support and providing the MIKE11 model, and the Khuzestan Water and Wastewater Company for providing the field data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Etemad-Shahidi.

Appendix

Appendix

Numerical discretization of the governing equations.

Conservation of mass:

$$\frac{\partial Q}{\partial x} + b_{\text{s}} \frac{\partial h}{\partial t} = q$$
(10)

where b s is the storage width

The derivatives of Eq. 10 can be shown as

$$\frac{\partial Q}{\partial x} \approx \frac{{\frac{{\left( {Q_{j + 1}^{n + 1} + Q_{j + 1}^{n} } \right)}}{2} - \frac{{\left( {Q_{j - 1}^{n + 1} + Q_{j - 1}^{n} } \right)}}{2}}}{{\Delta 2x_{j} }}$$
(11)
$$\frac{\partial h}{\partial t} \approx \frac{{\left( {h_{j}^{n + 1} - h_{j}^{n} } \right)}}{{\Delta t}}$$
(12)

b s in Eq. 10 can be approximated as

$$b_{\text{s}} = \frac{{A_{j} + A_{j + 1} }}{{\Delta 2x_{j} }}$$
(13)

Inserting the derivatives in Eq. 10 yields

$$\alpha_{j} Q_{j - 1}^{n + 1} + \beta_{j} h_{j}^{n + 1} + \gamma_{j} Q_{j + 1}^{n + 1} = \delta_{j}$$
(14)

Momentum conservation equation:

$$\frac{\partial Q}{\partial t} \approx \frac{{Q_{j}^{n + 1} - Q_{j}^{n} }}{{\Delta t}}$$
(15)
$$\frac{{\partial \left( {\alpha \frac{{Q^{2} }}{A}} \right)}}{\partial x} \approx \frac{{\left[ {\alpha \frac{{Q^{2} }}{A}} \right]_{j + 1}^{{n + {\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} - \left[ {\alpha \frac{{Q^{2} }}{A}} \right]_{j - 1}^{{n + {\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} }}{{\Delta 2x_{j} }}$$
(16)
$$\frac{\partial h}{\partial x} \approx \frac{{\frac{{\left( {h_{j + 1}^{n + 1} + h_{j + 1}^{n} } \right)}}{2} - \frac{{\left( {h_{j - 1}^{n + 1} + h_{j - 1}^{n} } \right)}}{2}}}{{\Delta 2x_{j} }}$$
(17)

Inserting these derivatives’ in the conservation of momentum equation yields

$$\alpha_{j} h_{j - 1}^{n + 1} + \beta_{j} Q_{j}^{n + 1} + \gamma_{j} h_{j + 1}^{n + 1} = \delta_{j}$$
(18)

where

$$\alpha_{j} = f\left( A \right)$$
(19)
$$\beta_{j} = f\left( {Q_{j}^{n} ,\Delta t,\Delta x,C,A,R} \right)$$
(20)
$$\gamma_{j} = f\left( A \right)$$
(21)
$$\delta_{j} = f\left( {A,\Delta x,\Delta t,\alpha ,q,v,\theta ,h_{j - 1}^{n} ,Q_{j - 1}^{{n + {\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} ,Q_{j}^{n} ,h_{j + 1}^{n} ,Q_{j + 1}^{{n + {\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} } \right)$$
(22)

Therefore, the momentum and mass conservation equations can be written in a similar form as follows

$$\alpha_{j} Z_{j - 1}^{n + 1} + \beta_{j} Z_{j}^{n + 1} + \gamma_{j} Z_{j + 1}^{n + 1} = \delta_{j}$$
(23)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etemad-Shahidi, A., Rohani, M.S., Parsa, J. et al. Effects of sea level rise on the salinity of Bahmanshir estuary. Int. J. Environ. Sci. Technol. 12, 3329–3340 (2015). https://doi.org/10.1007/s13762-015-0761-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-015-0761-x

Keywords

Navigation