Skip to main content

Advertisement

Log in

Brain tissue segmentation in neurosurgery: a systematic analysis for quantitative tractography approaches

  • Review article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

A Correction to this article was published on 23 June 2023

This article has been updated

Abstract

Diffusion magnetic resonance imaging (dMRI) is a cutting-edge imaging method that provides a macro-scale in vivo map of the white matter pathways in the brain. The measurement of brain microstructure and the enhancement of tractography rely heavily on dMRI tissue segmentation. Anatomical MRI technique (e.g., T1- and T2-weighted imaging) is the most widely used method for segmentation in dMRI. In comparison to anatomical MRI, dMRI suffers from higher image distortions, lower image quality, and making inter-modality registration more difficult. The dMRI tractography study of brain connectivity has become a major part of the neuroimaging landscape in recent years. In this research, we provide a high-level overview of the methods used to segment several brain tissues types, including grey and white matter and cerebrospinal fluid, to enable quantitative studies of structural connectivity in the brain in health and illness. In the first part of our review, we discuss the three main phases in the quantitative analysis of tractography, which are correction, segmentation, and quantification. Methodological possibilities are described for each phase, along with their popularity and potential benefits and drawbacks. After that, we will look at research that used quantitative tractography approaches to examine the white and grey matter of the brain, with an emphasis on neurodevelopment, ageing, neurological illnesses, mental disorders, and neurosurgery as possible applications. Even though there have been substantial advancements in methodological technology and the spectrum of applications, there is still no consensus regarding the "optimal" approach in the quantitative analysis of tractography. As a result, researchers should tread carefully when interpreting the findings of quantitative analysis of tractography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Change history

References

  1. Hasan A, Meziane F, Aspin R, Jalab H (2016) Segmentation of brain tumors in MRI images using three-dimensional active contour without edge. Symmetry 8(11):132

    Article  ADS  MathSciNet  Google Scholar 

  2. Gordillo N, Montseny E, Sobrevilla P (2013) State of the art survey on MRI brain tumor segmentation. Magn Reson Imaging 31(8):1426–1438

    Article  PubMed  Google Scholar 

  3. Bahadure N, Kumar Ray A, Pal TH (2017) Image analysis for MRI based brain tumor detection and feature extraction using biologically inspired BWT and SVM. Int J Biomed Imaging 2017:1–12

    Article  Google Scholar 

  4. Wong KP (2005) Medical image segmentation: methods and applications in functional imaging. In: Suri JS, Wilson DL, Laxminarayan S (eds) Handbook of biomedical image analysis. Topics in biomedical engineering international book series. Springer, Boston. https://doi.org/10.1007/0-306-48606-7_3

    Chapter  Google Scholar 

  5. Jeurissen B, Tournier J-D, Sijbers J (2015) Tissue-type segmentation using non-negative matrix factorization of multi-shell diffusion-weighted MRI images. In: ISMRM 23th Annual Meeting, Toronto, Ontario, Canada, volume 23, p. 349

  6. Kumazawa S, Yoshiura T, Honda H, Toyofuku F, Higashida Y (2010) Partial volume estimation and segmentation of brain tissue based on diffusion tensor MRI. Med Phys 37(4):1482–1490

    Article  PubMed  Google Scholar 

  7. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  8. CBICA Homepage, https://ipp.cbica.upenn.edu/. Last accessed 10 May 2022

  9. Mah Y-H, Jager R, Kennard C, Husain M, Nachev P (2014) A new method for auto- mated high-dimensional lesion segmentation evaluated in vascular injury and applied to the human occipital lobe. Cortex 56:51–63

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kumar R, Rani S, Sarkar A, Talukdar FA (2017) GPU-based level set method for MRI brain tumor segmentation using modified probabilistic clustering. IGI Global, pp 1053–1078

    Google Scholar 

  11. Ilunga-Mbuyamba E, Avina-Cervantes JG, Garcia-Perez A, de Jesus-Romero-Troncoso R, Aguirre-Ramos H, Cruz-Aceves I (2017) Localized active contour model with background intensity compensation applied on automatic MR brain tumor segmentation. Neurocomputing 220:84–97

    Article  Google Scholar 

  12. Soltaninejad M, Zhang L, Lambrou T, Yang G, Allinson N, Ye X (2017) MRI brain tumor segmentation and patient survival prediction using random forests and fully convolutional networks. In: Int. MICCAI Brain lesion Workshop. Springer. pp 204–15

  13. Parveen SA (2015) Detection of brain tumor in MRI images, using combination of fuzzy C-means and SVM. In: 2nd Int. Conf. Signal Processing and Integrated Networks (SPIN), pp 98–102

  14. Soltaninejad M, Zhang L, Lambrou T, Yang G, Allinson N, Ye X (2017) MRI brain tumor segmentation using random forests and fully convolutional networks. In: International MICCAI Brain lesion Workshop, pp 279–83

  15. Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M, Crimi A (2018) Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats’ challenge. arXiv preprint https://arXiv.org/181102629

  16. Steven AJ, Zhuo J, Melhem ER (2014) Diffusion kurtosis imaging: an emerging technique for evaluating the microstructural environment of the brain. Am J Roentgenol 202(1):26–33

    Article  Google Scholar 

  17. Sun P, Wu Y, Chen G, Wu J, Shen D, Yap P-T (2019) Tissue segmentation using sparse non-negative matrix factorization of spherical mean diffusion MRI data. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp 69–76

  18. Tabesh A, Jensen JH, Ardekani BA, Helpern JA (2011) Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn R83eson Med 65(3):823–836

    Article  Google Scholar 

  19. Tong Q, He H, Gong T, Li C, Liang P, Qian T, Sun Y, Ding Q, Li K, Zhong J (2020) Multicenter dataset of multi-shell diffusion MRI in healthy traveling adults with identical settings. Sci Data 7(1):1–7

    Article  Google Scholar 

  20. Tournier J-D, Calamante F, Connelly A (2007) Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35(4):1459–1472

    Article  PubMed  Google Scholar 

  21. Veraart J, Fieremans E, Jelescu IO, Knoll F, Novikov DS (2016) Gibbs ringing in diffusion MRI. Magn Reson Med 76(1):301–314

    Article  PubMed  Google Scholar 

  22. Wasserthal J, Neher P, Maier-Hein KH (2018) Tractseg-fast and accurate white matter tract segmentation. Neuroimage 183:239–253

    Article  PubMed  Google Scholar 

  23. Wen Y, He L, von Deneen KM, Lu Y (2013) Brain tissue classification based on DTI using an improved fuzzy C-means algorithm with spatial constraints. Magn Reson Imaging 31(9):1623–1630

    Article  PubMed  Google Scholar 

  24. Wu M, Chang L-C, Walker L, Lemaitre H, Barnett AS, Marenco S, Pierpaoli C (2008) Comparison of EPI distortion correction methods in diffusion tensor mri using a novel framework. Medical image computing and computer-assisted intervention. Springer, pp 321–329

    Google Scholar 

  25. Yap P-T, Zhang Y, Shen D (2015) Brain tissue segmentation based on diffusion MRI using L0 sparse-group representation classification. Medical image computing and computer-assisted intervention. Springer, pp 132–139

    Google Scholar 

  26. Zhang F, Cho KIK, Tang Y, Zhang T, Kelly S, Di Biase M, Xu L, Li H, Matcheri K, Whitfield-Gabrieli S et al (2020) MK-curve improves sensitivity to identify white matter alterations in clinical high risk for psychosis. Neuroimage 226:117564

    Article  PubMed  Google Scholar 

  27. Zhang F, Ning L, O’Donnell LJ, Pasternak O (2019) MK-curve—characterizing the relation between mean kurtosis and alterations in the diffusion MRI signal. Neuroimage 196:68–80

    Article  PubMed  Google Scholar 

  28. Zhang F, Noh T, Juvekar P, Frisken SF, Rigolo L, Norton I, Kapur T, Pujol S, Wells W, Yarmarkovich A, Kindlmann G, Wassermann D, San-Jose-Estepar R, Rathi Y, Kikinis R, Johnson HJ, Westin C-F, Pieper S, Golby AJ, O’Donnell LJ (2020) SlicerDMRI: diffusion MRI and tractography research software for brain cancer surgery planning and visualization. JCO Clin Cancer Inform. 4:299–309

    Article  PubMed  Google Scholar 

  29. Sakkalis V (2011) Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput Biol Med 41:1110–1117

    Article  CAS  PubMed  Google Scholar 

  30. Gatys LA, Ecker AS, Bethge M (2016) Image style transfer using convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 2414 – 2423

  31. Sarubbo S, Tate M, De Benedictis A, Merler S, Moritz-Gasser S, Herbet G, Duau H (2020) Mapping critical cortical hubs and white matter pathways by direct electrical stimulation: an original functional atlas of the human brain. Neuroimage 205:116237

    Article  PubMed  Google Scholar 

  32. Sarwar T, Seguin C, Ramamohanarao K, Zalesky A (2020) Towards deep learning for connectome mapping: a block decomposition framework. Neuroimage 212:116654

    Article  PubMed  Google Scholar 

  33. Sbardella E, Tona F, Petsas N, Pantano P (2013) Dti measurements in multiple sclerosis: evaluation of brain damage and clinical implications. Mult Scler Int 2013(2013):671730

    PubMed  PubMed Central  Google Scholar 

  34. Schaefer A, Kong R, Gordon EM, Laumann TO, Zuo XN, Holmes AJ, Eickho SB, Yeo BT (2018) Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb Cortex 28:3095–3114

    Article  PubMed  Google Scholar 

  35. Devi CN, Chandrasekharan A, Sundararaman VK, Alex ZC (2015) Neonatal brain MRI segmentation: a review. Comput Biol Med 64:163–178

    Article  PubMed  Google Scholar 

  36. Schurr R, Filo S, Mezer AA (2019) Tractography delineation of the vertical occipital fasciculus using quantitative t1 mapping. Neuroimage 202:116121

    Article  PubMed  Google Scholar 

  37. Seguin C, van den Heuvel MP, Zalesky A (2018) Navigation of brain networks. Proc Natl Acad Sci U S A 115:6297–6302

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Seguin C, Razi A, Zalesky A (2019) Inferring neural signalling directionality from undirected structural connectomes. Nat Commun 10:4289

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  39. Seguin C, Tian Y, Zalesky A (2020) Network communication models improve the behavioral and functional predictive utility of the human structural connectome. Netw Neurosci 4:980–1006

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sepasian N, ten Thije Boonkkamp J, Ter Haar Romeny B, Vilanova Bartroli A (2012) Multivalued geodesic ray-tracing for computing brain connections using diffusion tensor imaging. SIAM J Imag Sci 5:483–504

    Article  MathSciNet  Google Scholar 

  41. Shahab S, Stefanik L, Foussias G, Lai MC, Anderson KK, Voineskos AN (2018) Sex and diffusion tensor imaging of white matter in schizophrenia: a systematic review plus meta-analysis of the corpus callosum. Schizophr Bull 44:203–221

    Article  PubMed  Google Scholar 

  42. Pecheva D, Yushkevich P, Batalle D, Hughes E, Aljabar P, Wurie J, Hajnal JV, Edwards AD, Alexander DC, Counsell SJ et al (2017) A tract-specific approach to assessing white matter in preterm infants. Neuroimage 157:675–694

    Article  PubMed  Google Scholar 

  43. Miller DJ, Duka T, Stimpson CD, Schapiro SJ, Baze WB, McArthur MJ, Fobbs AJ, Sousa AM, Sestan N, Wildman DE et al (2012) Prolonged myelination in human neocortical evolution. Proc Natl Acad Sci 109:16480–16485

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gottlieb D, Shu CW, Solomonoff A, Vandeven H (1992) On the Gibbs phenomenon I: recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function. J Comp Appl Math 43:81–98

    Article  MathSciNet  Google Scholar 

  45. Misic B, Betzel RF, Nematzadeh A, Goni J, Gria A, Hagmann P, Flammini A, Ahn YY, Sporns O (2015) Cooperative and competitive spreading dynamics on the human connectome. Neuron 86:1518–1529

    Article  CAS  PubMed  Google Scholar 

  46. Mito R, Raelt D, Dhollander T, Vaughan DN, Tournier JD, Salvado O, Brodtmann A, Rowe CC, Villemagne VL, Connelly A (2018) Fibre-specific white matter reductions in Alzheimer’s disease and mild cognitive impairment. Brain 141:888–902

    Article  PubMed  Google Scholar 

  47. Cui LB, Wei Y, Xi YB, Gria A, De Lange SC, Kahn RS, Yin H, Van den Heuvel MP (2019) Connectome-based patterns of first episode medication-naive patients with schizophrenia. Schizophr Bull 45:1291–1299

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cui Z, Zhong S, Xu P, Gong G, He Y (2013) Panda: a pipeline toolbox for analyzing brain diffusion images. Front Hum Neurosci 7:42

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  49. Daducci A, Dal-Palu A, Descoteaux M, Thiran JP (2016) Microstructure informed tractography: pitfalls and open challenges. Front Neurosci 10:247

    Article  PubMed  PubMed Central  Google Scholar 

  50. Daducci A, Dal Palu A, Lemkaddem A, Thiran JP (2013) A convex optimization framework for global tractography. In: 2013 IEEE 10th International Symposium on Biomedical Imaging, IEEE. pp 524–527

  51. Daducci A, Dal Palu A, Lemkaddem A, Thiran JP (2014) COMMIT: convex optimization modeling for microstructure informed tractography. IEEE Trans Med Imaging 34:246–257

    Article  PubMed  Google Scholar 

  52. Damatac CG, Chauvin RJ, Zwiers MP, van Rooij D, Akkermans SE, Naaijen J, Hoekstra PJ, Hartman CA, Oosterlaan J, Franke B et al (2020) White matter microstructure in attention deficit/hyperactivity disorder: a systematic tractography study in 654 individuals. Biol Psychiatry Cogn Neurosci Neuroimaging 7:979–988

    PubMed  Google Scholar 

  53. Zhanga F, Daduccib A, Yong H, Schiavib S, Seguing C, Smithi R, Yeh C-H, Zhao T, O’Donnell LJ (2021) Quantitative mapping of the brain’s structural connectivity using diffusion MRI tractography: a review. arXiv, pp 1–29

  54. Davis SW, Dennis NA, Buchler NG, White LE, Madden DJ, Cabeza R (2009) Assessing the effects of age on long white matter tracts using diffusion tensor tractography. Neuroimage 46:530–541

    Article  PubMed  Google Scholar 

  55. De Witte NA, Mueller SC (2017) White matter integrity in brain networks relevant to anxiety and depression: evidence from the human connectome project dataset. Brain Imaging Behav 11:1604–1615

    Article  PubMed  Google Scholar 

  56. Zhang W, Olivi A, Hertig SJ, Van Zijl P, Mori S (2008) Automated fiber tracking of human brain white matter using diffusion tensor imaging. Neuroimage 42:771–777

    Article  PubMed  Google Scholar 

  57. Zhang Y, Zhang J, Oishi K, Faria AV, Jiang H, Li X, Akhter K, Rosa-Neto P, Pike GB, Evans A et al (2010) Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy. Neuroimage 52:1289–1301

    Article  PubMed  Google Scholar 

  58. Zhang Z, Descoteaux M, Zhang J, Girard G, Chamberland M, Dunson D, Srivastava A, Zhu H (2018) Mapping population-based structural connectomes. Neuroimage 172:130–145

    Article  PubMed  Google Scholar 

  59. Zhao T, Cao M, Niu H, Zuo XN, Evans A, He Y, Dong Q, Shu N (2015) Age-related changes in the topological organization of the white matter structural connectome across the human lifespan. Hum Brain Mapp 36:3777–3792

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhao T, Mishra V, Jeon T, Ouyang M, Peng Q, Chalak L, Wisnowski JL, Heyne R, Rollins N, Shu N et al (2019) Structural network maturation of the preterm human brain. Neuroimage 185:699–710

    Article  PubMed  Google Scholar 

  61. Zhao T, Sheng C, Bi Q, Niu W, Shu N, Han Y (2017) Age-related differences in the topological efficiency of the brain structural connectome in amnestic mild cognitive impairment. Neurobiol Aging 59:144–155

    Article  PubMed  Google Scholar 

  62. Zhao T, Xu Y, He Y (2019) Graph theoretical modeling of baby brain networks. Neuroimage 185:711–727

    Article  PubMed  Google Scholar 

  63. Zhao X, Tian L, Yan J, Yue W, Yan H, Zhang D (2017) Abnormal rich-club organization associated with compromised cognitive function in patients with schizophrenia and their unaffected parents. Neurosci Bull 33:445–454

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ziyan U, Sabuncu MR, Grimson WEL, Westin CF (2009) Consistency clustering: a robust algorithm for group-wise registration, segmentation and automatic atlas construction in diffusion MRI. Int J Comput Vision 85:279–290

    Article  Google Scholar 

  65. Zollei L, Jaimes C, Saliba E, Grant PE, Yendiki A (2019) Tracts constrained by underlying infant anatomy (traculina): an automated probabilistic tractography tool with anatomical priors for use in the newborn brain. Neuroimage 199:1–17

    Article  PubMed  Google Scholar 

  66. Yeh CH, Smith RE, Dhollander T, Connelly A (2017) Mesh-based anatomically-constrained tractography for effective tracking termination and structural connectome construction. In: Proceedings of the ISMRM, no. 0058

  67. Yeh CH, Smith RE, Liang X, Calamante F, Connelly A (2016) Correction for diffusion MRI fibre tracking biases: the consequences for structural connectomic metrics. Neuroimage 142:150–162

    Article  PubMed  Google Scholar 

  68. Yeh FC, Badre D, Verstynen T (2016) Connectometry: a statistical approach harnessing the analytical potential of the local connectome. Neuroimage 125:162–171

    Article  PubMed  Google Scholar 

  69. Yeh FC, Panesar S, Fernandes D, Meola A, Yoshino M, Fernandez-Miranda JC, Vettel JM, Verstynen T (2018) Population-averaged atlas of the macroscale human structural connectome and its network topology. Neuroimage 178:57–68

    Article  PubMed  Google Scholar 

  70. Urban G, Bendszus M, Hamprecht F, Kleesiek J (2014) Multimodal brain tumor segmentation using deep convolutional neural networks. In: MICCAI BraTS (Brain Tumour Segmentation) Challenge. Proceedings, Winning Contribution, pp 31–35

  71. Vijayakumar C, Gharpure DC (2011) Development of image-processing software for automatic segmentation of brain tumors in MRI images. J Med Phys/Assoc Med Phys India 36(3):147

    CAS  Google Scholar 

  72. Wang SH, Phillips P, Sui Y, Liu B, Yang M, Cheng H (2018) Classification of Alzheimer’s disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling. J Med Syst 42(5):85

    Article  PubMed  Google Scholar 

  73. Rondina JM, Ferreira LK, de Souza Duran FL, Kubo R, Ono CR, Leite CC et al (2018) Selecting the most relevant brain regions to discriminate Alzheimer’s disease patients from healthy controls using multiple kernel learning: a comparison across functional and structural imaging modalities and atlases. Neuroimage Clin 17:628–641

    Article  PubMed  Google Scholar 

  74. Saha P, Udupa J (2001) Optimum image thresholding via class uncertainty and region homogeneity. IEEE Trans Pattern Anal Mach Intell 12(7):689–706

    Article  Google Scholar 

  75. Salman Y (2009) Modified technique for volumetric brain tumour measurements. J Biomed Sci Eng 2:16–19

    Article  Google Scholar 

  76. Salman Y, Badawi A, Assal M, Alian S (2005) New automatic technique for tracking brain tumor response. In: International conference on biological and medical physics, pp 1–4

  77. Sanchez A, Mammone N, Morabito FC, Marino S, Adeli H (2019) A novel methodology for automated differential diagnosis of mild cognitive impairment and the Alzheimer’s disease using EEG signals. J Neurosci Methods 322:88–95

    Article  Google Scholar 

  78. Oxtoby NP, Garbarino S, Firth NC et al (2017) Data-driven sequence of changes to anatomical brain connectivity in sporadic Alzheimer’s disease. Front Neurol 8:580

    Article  PubMed  PubMed Central  Google Scholar 

  79. Betzel RF, Bassett DS (2018) Specificity and robustness of long-distance connections in weighted, interareal connectomes. Proc Natl Acad Sci U S A 115:E4880–E4889

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Raffelt D, Sadeghian F, Connor H. Connelly A (2015) Decreased apparent fiber density in the optic pathways correlates with glaucoma disease severity. In: Proc ISMRM, p 2213

  81. Vaughan DN, Raffelt D, Curwood E et al (2017) Tract-specific atrophy in focal epilepsy: disease, genetics, or seizures? Ann Neurol 81:240–250

    Article  PubMed  Google Scholar 

  82. Mito R, Raffelt D, Dhollander T et al (2018) Fibre-specific white matter reductions in Alzheimer’s disease and mild cognitive impairment. Brain 141:888–902

    Article  PubMed  Google Scholar 

  83. Liang X, Yeh C-H, Connelly A, Calamante F (2019) Robust identification of rich-club organization in weighted and dense structural connectomes. Brain Topogr 32:1–16

    Article  PubMed  Google Scholar 

  84. Xing X-X, Zuo X-N (2018) The anatomy of reliability: a must read for future human brain mapping. Sci Bull 63:1606–1607

    Article  Google Scholar 

  85. Zuo X-N, Xu T, Milham MP (2019) Harnessing reliability for neuroscience research. Nat Hum Behav 3:768–771

    Article  PubMed  Google Scholar 

  86. Tzourio-Mazoyer N, Landeau B, Papathanassiou D et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289

    Article  CAS  PubMed  Google Scholar 

  87. Glasser MF, Coalson TS, Robinson EC et al (2016) A multi-modal parcellation of human cerebral cortex. Nature 536:171–178

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gelb A, Tadmor E (1999) Detection of edges in spectral data. Appl Comput Harmon Anal 7:101–135

    Article  MathSciNet  Google Scholar 

  89. Gelb A, Tadmor E (2000) Detection of edges in spectral data II: nonlinear enhancement. SIAM J Numer Anal 38:1389–1408

    Article  MathSciNet  Google Scholar 

  90. Archibald R, Gelb A (2002) A method to reduce the Gibbs ringing artifact in MRI scans while keeping tissue boundary integrity. IEEE Trans Med Imaging 21:305–319

    Article  PubMed  Google Scholar 

  91. Archibald R, Chen K, Gelb A, Renautc R (2003) Improving tissue segmentation of human brain MRI through preprocessing by the Gegenbauer reconstruction method. Neuroimage 20:489–502

    Article  PubMed  Google Scholar 

  92. Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PC, Mori S (2004) Fiber tract-based atlas of human white matter anatomy. Radiology 230:77–87

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

PRK: conceptualization, methodology, and writing original draft preparation. RKJ: visualization, writing—review, and supervision. AK: validation and investigation. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Puranam Revanth Kumar.

Ethics declarations

Conflict of interest

There is no conflict of interest in publishing the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P.R., Jha, R.K. & Katti, A. Brain tissue segmentation in neurosurgery: a systematic analysis for quantitative tractography approaches. Acta Neurol Belg 124, 1–15 (2024). https://doi.org/10.1007/s13760-023-02170-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-023-02170-9

Keywords

Navigation