Skip to main content
Log in

The potential roles of dopamine in malignant glioma

  • Review
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

Abstract

Despite the numerous promising discoveries in contemporary cancer research and the emerging innovative cancer treatment strategies, the global burden of malignant glioma is expected to increase, partially due to its poor prognosis and human aging. Dopamine, a monoamine catecholamine neurotransmitter, is currently regarded as an important endogenous regulator of tumor growth. Dopamine may be an important treatment for brain tumors and could impact the pathogenesis of glioma by regulating tumor angiogenesis and vasculogenesis. Additionally, dopamine might exert an anti-glioma, cytotoxic effect by modulating apoptosis and autophagy. Dopamine and its receptors are also known to influence the immune system, as it is related to the pathogenesis of glioma. Dopamine may also increase the efficacy of anti-cancer drugs. Here, we review the potential roles of dopamine in malignant glioma and further identify the previously unknown function of dopamine as a potent regulator in the pathogenesis of glioma. Currently, the precise mechanisms regarding the protective effect of dopamine on glioma are poorly understood. However, our experimental results strongly emphasize the importance of this topic in future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Levite M (2016) Dopamine and T cells: dopamine receptors and potent effects on T cells, dopamine production in T cells, and abnormalities in the dopaminergic system in T cells in autoimmune, neurological and psychiatric diseases. Acta Physiol 216:42–89. doi:10.1111/apha.12476

    Article  CAS  Google Scholar 

  2. Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217. doi:10.1124/pr.110.002642

    Article  CAS  PubMed  Google Scholar 

  3. Björklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30:194–202. doi:10.1016/j.tins.2007.03.006

    Article  PubMed  Google Scholar 

  4. Torres GE, Gainetdinov RR, Caron MG (2003) Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci 4:13–25. doi:10.1038/nrn1008

    Article  CAS  PubMed  Google Scholar 

  5. Frankhauser P, Grimmer Y, Bugert P, Deuschle M, Schmidt M, Schloss P (2006) Characterization of the neuronal dopamine transporter DAT in human blood platelets. Neurosci Lett 399:197–201. doi:10.1016/j.neulet.2006.01.062

    Article  CAS  PubMed  Google Scholar 

  6. Da Prada M, Picotti GB (1979) Content and subcellular localization of catecholamines and 5-hydroxytryptamine in human and animal blood platelets: monoamine distribution between platelets and plasma. Br J Pharmacol 65:653–662. doi:10.1111/j.1476-5381.1979.tb07878.x

    Article  PubMed  PubMed Central  Google Scholar 

  7. Eisenhofer G, Coughtrie MW, Goldstein DS (1999) Dopamine sulphate: an enigma resolved. Clin Exp Pharmacol Physiol 26:S41–S53

    CAS  Google Scholar 

  8. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    CAS  PubMed  Google Scholar 

  9. Iversen SD, Iversen LL (2007) Dopamine: 50 years in perspective. Trends Neurosci 30:188–193. doi:10.1016/j.tins.2007.03.002

    Article  CAS  PubMed  Google Scholar 

  10. Carlsson A (2001) A paradigm shift in brain research. Science 294:1021–1024. doi:10.1126/science.1066969

    Article  CAS  PubMed  Google Scholar 

  11. Sibley DR (1999) New insights into dopaminergic receptor function using antisense and genetically altered animals. Annu Rev Pharmacol Toxicol 39:313–341. doi:10.1146/annurev.pharmtox.39.1.313

    Article  CAS  PubMed  Google Scholar 

  12. Moreno-Smith M, Lu C, Shahzad MM, Pena GN, Allen JK, Stone RL, Mangala LS, Han HD, Kim HS, Farley D, Berestein GL, Cole SW, Lutgendorf SK, Sood AK (2011) Dopamine blocks stress-mediated ovarian carcinoma growth. Clin Cancer Res 17:3649–3659. doi:10.1158/1078-0432.CCR-10-2441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ganguly S, Basu B, Shome S, Jadhav T, Roy S, Majumdar J, Dasgupta PS, Basu S (2010) Dopamine, by acting through its D2 receptor, inhibits insulin-like growth factor-I (IGF-I)-induced gastric cancer cell proliferation via up-regulation of Kruppel-like factor 4 through down-regulation of IGF-IR and AKT phosphorylation. Am J Pathol 177:2701–2707. doi:10.2353/ajpath.2010.100617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meredith EJ, Holder MJ, Rosén A, Lee AD, Dyer MJ, Barnes NM, Gordon J (2006) Dopamine targets cycling B cells independent of receptors/transporter for oxidative attack: implications for non-Hodgkin’s lymphoma. Proc Natl Acad Sci USA 103:13485–13490. doi:10.1073/pnas.0605993103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Senogles SE (2007) D2 Dopamine receptor-mediated antiproliferation in a small cell lung cancer cell line, NCI-H69. Anticancer Drugs 18:801–807. doi:10.1097/CAD.0b013e3280b10d36

    Article  CAS  PubMed  Google Scholar 

  16. Sarkar C, Chakroborty D, Chowdhury UR, Dasgupta PS, Basu S (2008) Dopamine increases the efficacy of anticancer drugs in breast and colon cancer preclinical models. Clin Cancer Res 14:2502–2510. doi:10.1158/1078-0432.CCR-07-1778

    Article  CAS  PubMed  Google Scholar 

  17. Sarkar C, Chakroborty D, Mitra RB, Banerjee S, Dasgupta PS, Basu S (2004) Dopamine in vivo inhibits VEGF-induced phosphorylation of VEGFR-2, MAPK, and focal adhesion kinase in endothelial cells. Am J Physiol Heart Circ Physiol 287:H1554–H1560. doi:10.1152/ajpheart.00272.2004

    Article  CAS  PubMed  Google Scholar 

  18. Chakroborty D, Chowdhury UR, Sarkar C, Baral R, Dasgupta PS, Basu S (2008) Dopamine regulates endothelial progenitor cell mobilization from mouse bone marrow in tumor vascularization. J Clin Invest 118:1380–1389. doi:10.1172/JCI33125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Basu S, Sarkar C, Chakroborty D, Nagy J, Mitra RB, Dasgupta PS, Mukhopadhyay D (2004) Ablation of peripheral dopaminergic nerves stimulates malignant tumor growth by inducing vascular permeability factor/vascular endothelial growth factor-mediated angiogenesis. Cancer Res 64:5551–5555. doi:10.1158/0008-5472.CAN-04-1600

    Article  CAS  PubMed  Google Scholar 

  20. Olson JJ, Nayak L, Ormond DR, Wen PY, Kalkanis SN, AANS/CNS Joint Guidelines Committee (2014) The role of cytotoxic chemotherapy in the management of progressive glioblastoma: a systematic review and evidence-based clinical practice guideline. J Neurooncol 118:501–555. doi:10.1007/s11060-013-1338-5

    Article  CAS  PubMed  Google Scholar 

  21. Li J, Zhu S, Kozono D, Ng K, Futalan D, Shen Y, Akers JC, Steed T, Kushwaha D, Schlabach M, Carter BS, Kwon CH, Furnari F, Cavenee W, Elledge S, Chen CC (2014) Genome-wide shRNA screen revealed integrated mitogenic signaling between dopamine receptor D2 (DRD2) and epidermal growth factor receptor (EGFR) in glioblastoma. Oncotarget 5:882–893. doi:10.18632/oncotarget.1801

    Article  PubMed  PubMed Central  Google Scholar 

  22. Qin T, Wang C, Chen X, Duan C, Zhang X, Zhang J, Chai H, Tang T, Chen H, Yue J, Li Y, Yang J (2015) Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma. Toxicol Appl Pharmacol 286:112–123. doi:10.1016/j.taap.2015.03.021

    Article  CAS  PubMed  Google Scholar 

  23. Nakaya N, Bidstrup PE, Saito-Nakaya K, Frederiksen K, Koskenvuo M, Pukkala E, Kaprio J, Floderus B, Uchitomi Y, Johansen C (2010) Personality traits and cancer risk and survival based on Finnish and Swedish registry data. Am J Epidemiol 172:377–385. doi:10.1093/aje/kwq046

    Article  PubMed  Google Scholar 

  24. Chakroborty D, Sarkar C, Mitra RB, Banerjee S, Dasgupta PS, Basu S (2004) Depleted dopamine in gastric cancer tissues: dopamine treatment retards growth of gastric cancer by inhibiting angiogenesis. Clin Cancer Res 10:4349–4356. doi:10.1158/1078-0432.CCR-04-0059

    Article  CAS  PubMed  Google Scholar 

  25. Wick MM (1983) The chemotherapy of malignant melanoma. J Invest Dermatol 80:61s–62s. doi:10.1038/jid.1983.16

    Article  CAS  Google Scholar 

  26. Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286. doi:10.1038/nrd2115

    Article  CAS  PubMed  Google Scholar 

  27. Chakroborty D, Sarkar C, Basu B, Dasgupta PS, Basu S (2009) Catecholamines regulate tumor angiogenesis. Cancer Res 69:3727–3730. doi:10.1158/0008-5472.CAN-08-4289

    Article  CAS  PubMed  Google Scholar 

  28. Chakroborty D, Sarkar C, Yu H, Wang J, Liu Z, Dasgupta PS, Basu S (2011) Dopamine stabilizes tumor blood vessels by up-regulating angiopoietin 1 expression in pericytes and Kruppel-like factor-2 expression in tumor endothelial cells. Proc Natl Acad Sci USA 108:20730–20735. doi:10.1073/pnas.1108696108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cole SW, Sood AK (2012) Molecular pathways: beta-adrenergic signaling in cancer. Clin Cancer Res 18:1201–1206. doi:10.1158/1078-0432.CCR-11-0641

    Article  CAS  PubMed  Google Scholar 

  30. Teunis MA, Kavelaars A, Voest E, Bakker JM, Ellenbroek BA, Cools AR, Heijnen CJ (2002) Reduced tumor growth, experimental metastasis formation, and angiogenesis in rats with a hyperreactive dopaminergic system. FASEB J 16:1465–1467. doi:10.1096/fj.02-0145fje

    CAS  PubMed  Google Scholar 

  31. Basu S, Nagy JA, Pal S, Vasile E, Eckelhoefer IA, Bliss VS, Manseau EJ, Dasgupta PS, Dvorak HF, Mukhopadhyay D (2001) The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nat Med 7:569–574. doi:10.1038/87895

    Article  CAS  PubMed  Google Scholar 

  32. Moreno-Smith M, Lee SJ, Lu C, Nagaraja AS, He G, Rupaimoole R, Han HD, Jennings NB, Roh JW, Nishimura M, Kang Y, Allen JK, Armaiz GN, Matsuo K, Shahzad MM, Bottsford-Miller J, Langley RR, Cole SW, Lutgendorf SK, Siddik ZH, Sood AK (2013) Biologic effects of dopamine on tumor vasculature in ovarian carcinoma. Neoplasia 15:502–510. doi:10.1593/neo.121412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Okada H, Mak TW (2004) Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer 4:592–603. doi:10.1038/nrc1412

    Article  CAS  PubMed  Google Scholar 

  34. Lefranc F, Brotchi J, Kiss R (2005) Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J Clin Oncol 23:2411–2422. doi:10.1200/JCO.2005.03.089

    Article  CAS  PubMed  Google Scholar 

  35. Lefranc F, Facchini V, Kiss R (2007) Proautophagic drugs: a novel means to combat apoptosis-resistant cancers, with a special emphasis on glioblastomas. Oncologist 12:1395–1403. doi:10.1634/theoncologist.12-12-1395

    Article  CAS  PubMed  Google Scholar 

  36. Lefranc F, Kiss R (2006) Autophagy, the Trojan horse to combat glioblastomas. Neurosurg Focus 20:E7. doi:10.3171/foc.2006.20.4.4

    Article  PubMed  Google Scholar 

  37. Kondo Y, Kanzawa T, Sawaya R, Kondo S (2005) The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5:726–734. doi:10.1038/nrc1692

    Article  CAS  PubMed  Google Scholar 

  38. Lefranc F, Kiss R (2008) The sodium pump alpha1 subunit as a potential target to combat apoptosis-resistant glioblastomas. Neoplasia 10:198–206. doi:10.1593/neo.07928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, Kondo S (2004) Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ 11:448–457. doi:10.1038/sj.cdd.4401359

    Article  CAS  PubMed  Google Scholar 

  40. Spencer B, Potkar R, Trejo M, Rockenstein E, Patrick C, Gindi R, Adame A, Wyss-Coray T, Masliah E (2009) Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J Neurosci 29:13578–13588. doi:10.1523/JNEUROSCI.4390-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang JD, Cao YL, Li Q, Yang YP, Jin M, Chen D, Wang F, Wang GH, Qin ZH, Hu LF, Liu CF (2015) A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation. Autophagy 11:2057–2073. doi:10.1080/15548627.2015.1100930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hu X, Pandolfi PP, Li Y, Koutcher JA, Rosenblum M, Holland EC (2005) mTOR promotes survival and astrocytic characteristics induced by Pten/AKT signaling in glioblastoma. Neoplasia 7:356–368. doi:10.1593/neo.04595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Takeuchi H, Kondo Y, Fujiwara K, Kanzawa T, Aoki H, Mills GB, Kondo S (2005) Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res 65:3336–3346. doi:10.1158/0008-5472.CAN-04-3640

    Article  CAS  PubMed  Google Scholar 

  44. Eshleman JS, Carlson BL, Mladek AC, Kastner BD, Shide KL, Sarkaria JN (2002) Inhibition of the mammalian target of rapamycin sensitizes U87 xenografts to fractionated radiation therapy. Cancer Res 62:7291–7297

    CAS  PubMed  Google Scholar 

  45. Duzgun Z, Eroglu Z, Avci CB (2016) Role of mTOR in glioblastoma. Gene 575:187–190. doi:10.1016/j.gene.2015.08.060

    Article  CAS  PubMed  Google Scholar 

  46. Glaser R, Kiecolt-Glaser JK (2005) Stress-induced immune dysfunction: implications for health. Nat Rev Immunol 5:243–251. doi:10.1038/nri1571

    Article  CAS  PubMed  Google Scholar 

  47. Rubí B, Maechler P (2010) Minireview: new roles for peripheral dopamine on metabolic control and tumor growth: let’s seek the balance. Endocrinology 151:5570–5581. doi:10.1210/en.2010-0745

    Article  PubMed  Google Scholar 

  48. Sarkar C, Basu B, Chakroborty D, Dasgupta PS, Basu S (2010) The immunoregulatory role of dopamine: an update. Brain Behav Immun 24:525–528. doi:10.1016/j.bbi.2009.10.015

    Article  CAS  PubMed  Google Scholar 

  49. Lissoni P, Vaghi M, Pescia S, Rovelli F, Ardizzola A, Valtulina F, Malugani F, Gardani G, Tancini G (2004) Biological response modifiers of cancer-related neuroendocrine disorders: efficacy of the long-term dopaminergic agonist cabergoline in the treatment of breast cancer-induced hyperprolactinemia. J Biol Regul Homeost Agents 18:291–294

    CAS  PubMed  Google Scholar 

  50. Redelman D, Welniak LA, Taub D, Murphy WJ (2008) Neuroendocrine hormones such as growth hormone and prolactin are integral members of the immunological cytokine network. Cell Immunol 252:111–121. doi:10.1016/j.cellimm.2007.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bartkowiak T, Curran MA (2015) 4-1BB agonists: multi-potent potentiators of tumor immunity. Front Oncol 5:117. doi:10.3389/fonc.2015.00117

    Article  PubMed  PubMed Central  Google Scholar 

  52. Cosentino M, Fietta AM, Ferrari M, Rasini E, Bombelli R, Carcano E, Saporiti F, Meloni F, Marino F, Lecchini S (2007) Human CD4 + CD25 + regulatory T cells selectively express tyrosine hydroxylase and contain endogenous catecholamines subserving an autocrine/paracrine inhibitory functional loop. Blood 109:632–642. doi:10.1182/blood-2006-01-028423

    Article  CAS  PubMed  Google Scholar 

  53. Qiu B, Zhang D, Wang C, Tao J, Tie X, Qiao Y, Xu K, Wang Y, Wu A (2011) IL-10 and TGF-beta2 are overexpressed in tumor spheres cultured from human gliomas. Mol Biol Rep 38:3585–3591. doi:10.1007/s11033-010-0469-4

    Article  CAS  PubMed  Google Scholar 

  54. Lutgendorf SK, Lamkin DM, Jennings NB, Arevalo JM, Penedo F, DeGeest K, Langley RR, Lucci JA, Cole SW, Lubaroff DM, Sood AK (2008) Biobehavioral influences on matrix metalloproteinase expression in ovarian carcinoma. Clin Cancer Res 14:6839–6846. doi:10.1158/1078-0432.CCR-08-0230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zeisberger SM, Odermatt B, Marty C, Zehnder-Fjällman AH, Ballmer-Hofer K, Schwendener RA (2006) Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer 95:272–281. doi:10.1038/sj.bjc.6603240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. De Palma M, Lewis CE (2011) Cancer: macrophages limit chemotherapy. Nature 472:303–304. doi:10.1038/472303a

    Article  PubMed  Google Scholar 

  57. Chen P, Bonaldo P (2013) Role of macrophage polarization in tumor angiogenesis and vessel normalization: implications for new anticancer therapies. Int Rev Cell Mol Biol 301:1–35. doi:10.1016/B978-0-12-407704-1.00001-4

    Article  CAS  PubMed  Google Scholar 

  58. Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66:605–612. doi:10.1158/0008-5472.CAN-05-4005

    Article  CAS  PubMed  Google Scholar 

  59. Huang Y, Snuderl M, Jain RK (2011) Polarization of tumor-associated macrophages: a novel strategy for vascular normalization and antitumor immunity. Cancer Cell 19:1–2. doi:10.1016/j.ccr.2011.01.005

    Article  PubMed  PubMed Central  Google Scholar 

  60. Trudler D, Weinreb O, Mandel SA, Youdim MB, Frenkel D (2014) DJ-1 deficiency triggers microglia sensitivity to dopamine toward a pro-inflammatory phenotype that is attenuated by rasagiline. J Neurochem 129:434–447. doi:10.1111/jnc.12633

    Article  CAS  PubMed  Google Scholar 

  61. Jahani-Asl A, Bonni A (2013) iNOS: a potential therapeutic target for malignant glioma. Curr Mol Med 13:1241–1249. doi:10.2174/1566524011313080002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yeung YT, McDonald KL, Grewal T, Munoz L (2013) Interleukins in glioblastoma pathophysiology: implications for therapy. Br J Pharmacol 168:591–606. doi:10.1111/bph.12008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91:1071–1121. doi:10.1152/physrev.00038.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Goel S, Wong AH, Jain RK (2012) Vascular normalization as a therapeutic strategy for malignant and nonmalignant disease. Cold Spring Harb Perspect Med 2:a006486. doi:10.1101/cshperspect.a006486

    Article  PubMed  PubMed Central  Google Scholar 

  65. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62. doi:10.1126/science.1104819

    Article  CAS  PubMed  Google Scholar 

  66. Arjaans M, Oude Munnink TH, Oosting SF, Terwisscha van Scheltinga AG, Gietema JA, Garbacik ET, Timmer-Bosscha H, Lub-de Hooge MN, Schröder CP, de Vries EG (2013) Bevacizumab-induced normalization of blood vessels in tumors hampers antibody uptake. Cancer Res 73:3347–3355. doi:10.1158/0008-5472.CAN-12-3518

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81372714).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Chi Ma or Bo Zhang.

Ethics declarations

Conflict of interest

The authors have no competing financial interests to declare.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study written formal consent is not required.

Additional information

Y.-L. Lan and X. Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, YL., Wang, X., Xing, JS. et al. The potential roles of dopamine in malignant glioma. Acta Neurol Belg 117, 613–621 (2017). https://doi.org/10.1007/s13760-016-0730-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-016-0730-2

Keywords

Navigation