Skip to main content

Advertisement

Log in

Streptozotocin-induced insulin deficiency leads to development of behavioral deficits in rats

  • Original Article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

Abstract

Diabetes mellitus is one of the most common serious metabolic disorders in humans that develops due to diminished production of insulin (type I) or resistance to its effect (type II and gestational). The present study was designed to determine the neuropsychological deficits produced following streptozotocin-induced diabetes in rats. Rats were made diabetic by the intra-peritoneal administration of 60 mg/kg streptozotocin (STZ) which induces type-1 diabetes by the destruction “β-cells” of pancreas. Body weight, food and water intake was monitored daily. Open field test (OFT) model, forced swim test (FST) and Morris water maze (MWM) model were performed for the evaluation of ambulation, depression-like symptoms and memory effects, respectively. After 10 days of diabetes induction the exploratory activity of rats was monitored by OFT while depression-like symptoms and memory effects in rats were analyzed by FST and MWM. Results showed that there was no significant effect of STZ-induced diabetes on body weight but food and water intake of STZ-induced diabetic rats was significantly increased. Exploratory activity was significantly decreased and short-term and long-term memory was significantly impaired while the depression-like symptoms was significantly increased in STZ diabetic rats. Thus, it may be suggested that STZ-induced diabetes alters the brain functions and may play an important role in the pathophysiology of certain behavioral deficits like depression, impaired learning and memory functions related to diabetes. This finding may be of relevance in the pathophysiology and in the clinical picture, which could be related to an altered brain serotonin metabolism and neurotransmission and may possibly be related to neuropsychiatric disorders in diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Roth KI (2007) Diabetes treatment—bridging the divide. N Engl J Med 356:1499–1501

    Article  Google Scholar 

  2. World Health Organization Department communicates disease surveillance. Definition, diagnosis and classification of Diabetes Mellitus and its complications. 1999

  3. Cooke DW, Plotnick L (2008) Type 1 diabetes mellitus in pediatrics. Pediatr Rev 29:374–384

    Article  PubMed  Google Scholar 

  4. Miyata S, Hirano S, Kamei J (2004) Diabetes attenuates the antidepressant-like effect mediated by the activation of 5-HT1A receptor in the mouse tail suspension test. Neuropsychopharmacology 29:461–469

    Article  PubMed  CAS  Google Scholar 

  5. Xu W, Wei Z, Xie JW, Tao W, Siting W, Teng WP, Wang ZY (2010) Insulin deficiency exacerbates cerebral amyloidosis and behavioral deficits in an Alzheimer transgenic mouse model. Mol Neurodegener 5:4b

    Article  Google Scholar 

  6. Herera MR, Manjarrez GG, Hernandez RJ (2005) Inhibition and kinetic changes of brain tryptophan-5-hydroxylase during insulin-dependent diabetes mellitus in the rat. Nutr Neurosci 8:57–62

    Article  Google Scholar 

  7. Ohtani N, Ohta M, Sugano T (1997) Microdialysis study of modification of hypothalamic neurotransmitters in streptozotocin-diabetic rats. J Neurochem 69:1622–1628

    Article  PubMed  CAS  Google Scholar 

  8. Hermanns N, Kulzer B, Krichbaum M, Kubiak T, Haak T (2005) Affective and anxiety disorders in a German sample of diabetic patients: prevalence, comorbidity and risk factors. Diabet Med 22:293–300

    Article  PubMed  CAS  Google Scholar 

  9. Van Dieren S, Beulens JW, van der Schouw YT, Grobbee DE, Neal B (2010) The global burden of diabetes and its complications: an emerging pandemic. Eur J Cardiovasc Prev Rehabil 17:3–8

    Google Scholar 

  10. Biessels GJ, Kappelle AC, Bravenboer B, Erkelens DW, Gispen WH (1994) Cerebral function in diabetes mellitus. Diabetologica 37:643–650

    Article  CAS  Google Scholar 

  11. Golden SH, Lee HB, Schreiner DJ et al (2007) Depression and type 2 diabetes mellitus: the multiethnic study of atherosclerosis. Psychosom Med 69:529–536

    Article  PubMed  Google Scholar 

  12. Gupta G, Azam M, Baquer NZ (1992) Effect of experimental diabetes on the catecholamine metabolism in rat brain. J Neurochem 58:95–100

    Article  PubMed  CAS  Google Scholar 

  13. Bhuyan BK, Kuentzel SL, Gray LG, Fraser TJ, Wallach D, Neil GL (1974) Tissue distribution of streptozotocin (NSC-85998). Cancer Chemother Rep 58:157–165

    PubMed  CAS  Google Scholar 

  14. Biessels GJ, Kamal A, Ramaken GM, Urban IJ, Spruijt BM, Erkelens DW, Gispen WH (1996) Place learning and hippocampal synaptic plasticity in streptozotocin-induced diabetic rats. Diabetes 45:1259–1266

    Article  PubMed  CAS  Google Scholar 

  15. Eaton WW (2002) Epidemiologic evidence on the comorbidity of depression and diabetes. J Psychosom Res 53:903–906

    Article  PubMed  Google Scholar 

  16. Shenassa ED, Daskalakis C, Liebhaber A, Braubach M, Brown MJ (2007) Dampness and mold in the home and depression: an examination of mold-related illness and perceived control of one’s home as possible depression pathways. Am J Public Health 97:1893

    Article  PubMed  Google Scholar 

  17. Chase B (2008) Serotonin deficiency syndrome; signs and symptoms. Health and fitness: depression article category. Ezine articles. Available via DIALOG. http://ezinearticles.com/?Serotonin-Deficiency-Syndrome---Signs-and-Symptoms&id=1770324. Accessed 11 Dec 2008

  18. Zhao WQ, Alkon DL (2001) Role of insulin and insulin receptors in learning and memory. Mol Cell Endocrinol 177:125–134

    Article  PubMed  CAS  Google Scholar 

  19. Trulson ME, Jacoby JH, Mackenzia RG (1986) Streptozotocin induced diabetes reduces brain serotonin synthesis in rats. J Neurochem 46:1068–1072

    Article  PubMed  CAS  Google Scholar 

  20. Lackovic Z, Salkovic M (1990) Streptozotocin and alloxan produce alterations in rat brain monoamines independently of pancreatic beta cells destruction. Life Sci 46:49–54

    Article  PubMed  CAS  Google Scholar 

  21. Manjarrez GG, Herrera R, Marquez J, Hernandez MA, Well SS, Ramírez MG, Hernández JR(1999) Alterations in brain serotonin synthesis induced by insulin-dependent diabetes mellitus. Rev Invest Clin 51: 293-302

  22. Eshrat H, Hussain MA (2002) Reversal of diabetic retinopathy in streptozotocin induced diabetic rats using traditional indian anti-diabetic plant, Azadirachta indica (L.). Indian J Clin Biochem 17(2):115–123

    Article  Google Scholar 

  23. Xia X, Yan J, Shen Y, Tang K, Yin J, Zhang Y, Yang D, Liang H, Ye J, Weng J (2011) Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis. PLoS ONE 6(2):e16556

    Article  PubMed  CAS  Google Scholar 

  24. Haleem DJ, Batool F (1996) Regionally specific effects of diazepam on brain serotonin metabolism in rats: sustained effects following repeated administration. Life Sci 59:1239–1246

    Article  Google Scholar 

  25. Haleem DJ, Jabeen B, Parveen T (1998) Inhibition of restraint-induced anorexia by injected tryptophan. Life Sci USA 63:502–512

    Google Scholar 

  26. Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

    PubMed  CAS  Google Scholar 

  27. Khaliq S, Haider S, Naqvi F, Perveen T, Saleem S, Haleem DJ (2012) Altered brain serotonergic neurotransmission following caffeine withdrawal produces behavioral deficits in rats. Pak J Pharm Sci 25:21–25

    PubMed  CAS  Google Scholar 

  28. Morris RG (1981) Spatial localization does not depend on the presence of local cues. Learn Motiv 12:239–260

    Article  Google Scholar 

  29. Shukitt HB (1999) The effects of aging and oxidative stress on psychomotor and cognitive behavior. Age 22:9–17

    Article  Google Scholar 

  30. Haider S, Tabassum S, Perveen T, Ali S, Saleem S, Khan AK, Haleem DJ (2011) Age-related decrease in striatal DA produces cognitive deficits in male rats. J Pharm Nutr Sci 1:20–27

    Article  Google Scholar 

  31. Abraham PM, Kuruvilla KP, Mathew J, Malat A, Joy S, Paulose CS (2010) Alterations in hippocampal serotonergic and INSR function in streptozotocin induced diabetic rats exposed to stress: neuroprotective role of pyridoxine and Aegle marmelose. J Biomed Sci 17:78

    Article  PubMed  Google Scholar 

  32. Schulingkamp RJ, Pagano TC, Hung D, Raffa RB (2000) Insulin receptors and insulin action in the brain; review and clinical implications. Neurosci Biobehav Rev 24:855–872

    Article  PubMed  CAS  Google Scholar 

  33. Morrison PD, Mackinnon MWB, Bartrup JT, Skett PG, Stone TW (1992) Changes in adenosine sensitivity in the hippocampus of rats with streptozotocin-induced diabetes. Br J Pharmacol 105:1004–1008

    Article  PubMed  CAS  Google Scholar 

  34. Scott JM, McDougle L, Schwirian K, Taylor CA (2010) Differences in the dietary intake habits by diabetes status for African American adults. Ethn Dis 20:99–105

    PubMed  Google Scholar 

  35. Naughton M, Mulrooney JB, Leonard BE (2000) A review of the role of serotonin receptors in psychiatric disorders. Hum Psychopharmacol Clin Exp 15:397–415

    Article  CAS  Google Scholar 

  36. Meeter M, Talamini L, Schmitt JAJ, Riedel WM (2005) Effects of 5-HT on memory and the hippocampus: model and data. Neuropsychopharmacology 31:712–720

    Article  Google Scholar 

  37. Manjarrez G, Herrera R, Leon M, Hernández R (2006) A low brain serotonergic neurotransmission in children with type 1 diabetes detected through the intensity dependence of auditory evoked potentials. Diab Care 29:73–77

    Article  CAS  Google Scholar 

  38. Manjarrez GG, Herrera MR, Mejenes SA, Godinez LT, Hernandez RJ (2009) Functional change of auditory cortex related to brain serotonergic neurotransmission in type 1 diabetes adolescents with and without depression. World J Biol Psychiatry 10:877–888

    Article  Google Scholar 

  39. Popoviç M, Biessels GJ, Isaacson RL, Gispen WH (2001) Learning and memory in streptozotocin-induced diabetic rats in a novel spatial/object discrimination task. Behav Brain Res 122:201–207

    Article  PubMed  Google Scholar 

  40. Haider S, Khaliq S, Ahmed SP, Perveen T, Haleem DJ (2006) Relationship of brain tryptophan and serotonin in improving cognitive performance in rats. Pak J Pharm Sci 19:11–15

    Article  PubMed  Google Scholar 

  41. Schmitt JA, Jorissen BL, Dye L, Markus CR, Deutz NE, Riedel WJ (2005) Memory function in women with premenstrual complaints and the effect of serotonergic stimulation by acute administration of an alpha-lactalbumin protein. Psychopharmacology 19:375–384

    Article  CAS  Google Scholar 

  42. Haider S, Shameem S, Ahmed SP, Parveen T, Haleem DJ (2005) Repeated administration of lead decreased brain 5-HT metabolism and produces memory deficits in rats. Cell Mol Biol 10:669–676

    CAS  Google Scholar 

  43. Kahn P, Westenberg H (1985) l-5-Hydroxytryptophan in the treatment of anxiety disorders. J Affect Disord 8:197–200

    Article  PubMed  CAS  Google Scholar 

  44. Blier P, Ward NM (2003) Is there a role for 5-HT (1-A) agonists in the treatment of depression? Biol Psychiatry 53:193–203

    Article  PubMed  CAS  Google Scholar 

  45. Su LD, Sun CL, Shen Y (2010) Ethanol acutely modulates mGluR1-dependent long term depression in cerebellum. Alcohol Clin Exp Res 34:1140–1145

    PubMed  CAS  Google Scholar 

  46. Gotham AM, Brown RG, Marsden CP (1988) Frontal cognitive function in patients with Parkinson’s disease on and off levo. Brain 111:299–321

    Article  PubMed  Google Scholar 

  47. Mann JJ (1999) Role of the serotonergic system in the pathogenesis of major depression and suicidal behavior. Neuropsychopharmacology 21:99S–105S

    PubMed  CAS  Google Scholar 

  48. Meltzer HY (1999) The role of serotonin in antipsychotic drug action. Neuropsychopharmacology 21:106S–115S

    PubMed  CAS  Google Scholar 

  49. Blier P, de Montigny C (1999) Serotonin and drug-induced therapeutic responses in major depression, obsessive-compulsive and panic disorders. Neuropharmacology 21:91S–98S

    CAS  Google Scholar 

  50. Al-haider AA, Korashy HM, Sayed-Ahmed MM, Mobark M, Kfoury H, Mansour MA (2011) Metformin attenuates streptozotocin-induced diabetic nephropathy in rats through modulation of oxidative stress genes expression. Chem Biol Interact 192:233–242

    Article  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saida Haider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haider, S., Ahmed, S., Tabassum, S. et al. Streptozotocin-induced insulin deficiency leads to development of behavioral deficits in rats. Acta Neurol Belg 113, 35–41 (2013). https://doi.org/10.1007/s13760-012-0121-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-012-0121-2

Keywords

Navigation