Skip to main content
Log in

Fine Scale Microevolutionary and Demographic Processes Shaping a Wild Metapopulation Dynamics of the South American Fruit Fly Anastrepha fraterculus

  • Ecology, Behavior and Bionomics
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

Anastrepha fraterculus (Wiedmann) is an important American pest species. Knowledge of its population dynamics is of particular interest for ecology, evolutionary biology, and management programs. In the present study, phenotypic, genotypic, and spatial data were combined, within the frame of landscape genetics, to uncover the spatial population genetic structure (SGS) and demographic processes of an Argentinian local population from the Yungas ecoregion. Eight simple sequence repeats (SSR) loci and six morphometric traits were analysed considering the hierarchical levels: tree/fruit/individual. Genetic variability estimates were high (HE = 0.72, RA = 4.39). Multivariate analyses of phenotypic data showed that in average 52.81% of variance is explained by the tree level, followed by between individuals 28.37%. Spatial analysis of morphological traits revealed a negative autocorrelation in all cases. SGS analysis and isolation by distance based on SSR showed no significant autocorrelation for molecular coancestry. The comparison between phenotypic (PST) and molecular (FST) differentiation identified positive selection in different fruits for all traits. Bayesian analysis revealed a cryptic structure within the population, with three clusters spatially separated. The results of this study showed a metapopulation dynamics. The genetic background of the components of this metapopulation is expected to change through time due to seasonality, repopulation activities, and high gene flow, with an estimated dispersal ability of at least 10 km. Effective population size (Ne) of the metapopulation was estimated in around 800 flies, and within subpopulations (clusters) Ne was associated with the levels of genetic drift experienced by the founding lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

All data discussed in the paper will be made available to readers.

Code availability

Software applications are mentioned in the methods, and programs are publicly available.

References

  • Agapow PM, Burt A (2001) Indices of multilocus linkage disequilibrium. Mol Ecol Notes 1:101–102. https://doi.org/10.1046/j.1471-8278.2000.00014.x

    Article  CAS  Google Scholar 

  • Alberti AC, Rodriguero MS, Gómez Cendra P, Saidman BO, Vilardi JC (2002) Evidence indicating that Argentine populations of Anastrepha fraterculus (Diptera: Tephritidae) belong to a single biological species. Ann Entomol Soc Am 95:505–512

    Article  CAS  Google Scholar 

  • Alberti AC, Confalonieri VA, Zandomeni RO, Vilardi JC (2008) Phylogeographic studies on natural populations of the South American fruit fly, Anastrepha fraterculus (Diptera: Tephritidae). Genetica 132:1–8. https://doi.org/10.1007/s10709-007-9143-8

    Article  CAS  PubMed  Google Scholar 

  • Altamirano J (2017) Distribución espacio-temporal de Anastrepha fraterculus y Ceratitis capitata (Diptera: Tephritidae) en dos áreas con distinto grado de disturbio en un sector de Yungas australes en Tucumán, Argentina. Ph. D. Dissertation, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán. https://ri.conicet.gov.ar/handle/11336/83042. Accessed 14 Jan 2022.

  • Aluja M, Díaz-Fleischer F, Papaj DR, Lagunes G, Sivinski J (2001) Effects of age, diet, female density, and the host resource on egg load in Anastrepha ludens and Anastrepha obliqua (Diptera: Tephritidae). J Insect Physiol 47:975–988

    Article  CAS  PubMed  Google Scholar 

  • Aluja M, Sivinski J, Van Driesche R, Anzures-Dadda A, Guillen L (2014) Pest management through tropical tree conservation. Biodivers Conserv 23:831–853

    Article  Google Scholar 

  • Bachmann GE, Fernández PC, Vera MT, Segura DF (2020) Long term oviposition deterrent activity of Anastrepha fraterculus feces. Proceedings of the Americas Congress of Fruit Flies, X Meeting of the Working Group on Fruit Flies – TWHH Bogota, Colombia, pp 134

  • Balkenhol N, Cushman S, Storfer A, Waits L (2015) Landscape genetics: concepts, methods, applications. Wiley-Blackwell, Chichester

    Book  Google Scholar 

  • Barrett SCH, Kohn J (1991) The genetic and evolutionary consequences of small population size in plant: implications for conservation. In: Falk D, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 3–30

    Google Scholar 

  • Baruffi L, Damiani G, Guglielmino CR, Bandi C, Malacrida AR, Gasperi G (1995) Polymorphism within and between populations of Ceratitis capitata: comparison between RAPD and multilocus enzyme electrophoresis data. Heredity 74:425–437

    Article  CAS  PubMed  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2013) lme4: linear mixed-effects models using Eigen and S4R package version 1 0–4

  • Begon M, Harper JL, Townsend CR (1996) Ecology: individuals, populations and communities, 3rd edn. Blackwell Science, Oxford

    Book  Google Scholar 

  • Brommer JE (2011) Whither PST? The approximation of QST by PST in evolutionary and conservation biology. J Evol Biol 24:1160–1168

    Article  CAS  PubMed  Google Scholar 

  • Brown AHD, Feldman MW, Nevo E (1980) Multilocus structure of natural populations of Hordeum spontaneum. Genetics 96:523–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canty A, Ripley B (2017) Boot: bootstrap R (S-Plus) functions. R Package Version 1.3–19. https://cran.r-project.org/web/packages/boot/index.html. Accessed 23 April 2021

  • Chessel D, Dufour A, Thioulouse J (2004) The ade4 package – I: one-table methods. R News 4:5–10. https://cran.r-project.org/doc/Rnews/ . Accessed 23 April 2021

  • Cladera JL, Vilardi JC, Juri M, Paulin LE, Giardini MC, Gómez Cendra PV, Segura DF, Lanzavecchia SB (2014) Genetics and biology of Anastrepha fraterculus: research supporting the use of the sterile insect technique (SIT) to control this pest in Argentina. BMC Genet 15(S12):14

    Google Scholar 

  • David JP, Huber K, Failloux AB, Rey D, Meyran JC (2003) The role of environment in shaping the genetic diversity of the subalpine mosquito, Aedes rusticus (Diptera, Culicidae). Mol Ecol 12:1951–1961

    Article  CAS  PubMed  Google Scholar 

  • Devescovi F, Liendo FC, Bachmann GE, Bouvet JP, Milla FH, Vera MT, Cladera JL, Segura DF (2015) Fruit infestation patterns of Anastrepha fraterculus and Ceratitis capitata reveal that coss-recognition does not lead to complete avoidance of interspecific competition in nature. Agric for Entomol 17:325–335. https://doi.org/10.1111/afe.12111

    Article  Google Scholar 

  • Do C, Waples RS, Peel D, Macbeth GM, Tilliet BJ, Ovenden JR (2014) NeEstimator V2.1 reimplementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214

    Article  CAS  PubMed  Google Scholar 

  • Engels B (2016) HWxtest: Exact Tests for Hardy-Weinberg Proportions. R Package Version 1.1.7. https://cran.r-project.org/src/contrib/Archive/HWxtest/ . Accessed 23 April 2021

  • Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol 19:4113–4130

    Article  PubMed  Google Scholar 

  • Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frankham R (1995) Effective population size/adult population size ratios in wildlife: a review. Genet Res 66:95–107. https://doi.org/10.1017/S0016672300034455

    Article  Google Scholar 

  • Freeland J (2006) Molecular ecology. Genetic analysis of multiple populations. Wiley, UK

    Google Scholar 

  • Garnas JR, Auger-Rozenberg M, Roques A, Bertelsmeier C, Wingfield MJ, Saccaggi DL, Roy HE, Slippers B (2016) Complex patterns of global spread in invasive insects: eco-evolutionary and management consequences. Biol Invasions 18:935–952

    Article  Google Scholar 

  • Giardini MC, Nieves M, Scannapieco AC, Conte C, Milla F, Schapovaloff M, Frissolo MS, Remis MI, Cladera JL, Lanzavecchia SB (2020) Geographic distribution of sex chromosome polymorphism in Anastrepha fraterculus sp1 from Argentina. BMC Genet 21(Suppl 2):149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goudet J (2006) Hierfstat: estimation and tests of hierarchical F-statistics. R Package Version 0.5–7 https://cran.r-project.org/web/packages/hierfstat/index.html Accessed 23 April 2021

  • Guillot G, Mortier F, Estoup A (2005) GENELAND: a computer package for landscape genetics. Mol Ecol Notes 5:712–715

    Article  CAS  Google Scholar 

  • Hadfield JD (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw 33:1–22

    Article  Google Scholar 

  • Hanski I, Gilpin M (1991) Metapopulation dynamics: brief history and conceptual domain. Biol J Linn Soc 42:3–16

    Article  Google Scholar 

  • Hare MP, Nunney L, Schwartz MK, Ruzzante DE, Burford M, Waples RS, Ruegg K, Palstra F (2011) Understanding and estimating effective population size for practical application in marine species management. Conserv Biol 25:438–449

    Article  PubMed  Google Scholar 

  • Hedrick PW (2005a) A standardized genetic differentiation measure. Evolution 59:633–638

    Article  Google Scholar 

  • Hedrick PW (2005b) Genetic of populations, 3rd edn. Jones and Bartlett Publishers, Sudbury, pp 505–507

    Google Scholar 

  • Hernández-Ortiz V, Bartolucci AF, Morales-Valles P, Frías D, Selivon D (2012) Cryptic species of the Anastrepha fraterculus complex (Diptera: Tephritidae): a multivariate approach for the recognition of South American morphotypes. Ann Entomol Soc Am 105:305–318

    Article  Google Scholar 

  • Hernández-Ortiz V, Canal NA, Tigrero Salas JO, Ruíz-Hurtado FM, Dzul-Cauich JF (2015) Taxonomy and phenotypic relationships of the Anastrepha fraterculus complex in the Mesoamerican and Pacific Neotropical dominions (Diptera, Tephritidae). ZooKeys 540:95–124

    Article  Google Scholar 

  • Hernández-Ortiz V, Barradas-Juanz N, Díaz-Castelazo C (2019) A review of the natural host plants of the Anastrepha fraterculus complex in the Americas. In: Perez-Staples D, Diaz-Fleischer F, Montoya P, Vera MT (eds) Area-wide management of fruit fly pests. CRC Press, Boca Ratón, pp 89–122

    Chapter  Google Scholar 

  • Kamvar ZN, Brooks JC, Grunwald NJ (2015) Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front Genet 6:208. https://doi.org/10.3389/fgene.2015.00208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karhunen M, Ovaskainen O (2012) Estimating population-level coancestry coefficients by an admixture F-model. Genetics 192:609–617

    Article  PubMed  PubMed Central  Google Scholar 

  • Karsten M, van Vuuren BJ, Barnaud A, Terblanche JS (2013) Population genetics of Ceratitis capitata in South Africa: implications for dispersal and pest management. PLoS ONE 8:e54281. https://doi.org/10.1371/journal.pone.0054281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keenan K, McGinnity P, Cross TF, Crozier WW, Prodohl PA (2013) diveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol 4:782–788. https://doi.org/10.1111/2041-210X.12067

    Article  Google Scholar 

  • Köppen W (1918) Klassifikation der klima nach temperatur, niederschlag und jahreslauf. Petermanns Mitt 64:193–203

    Google Scholar 

  • Kurota H, Shimida M (2002) Geographical variation in the seasonal population dynamics of Bruchidius dorsalis (Coleoptera: Bruchidae): constraints of temperature and host plant phenology. Environ Entomol 31:469–475

    Article  Google Scholar 

  • Lanzavecchia SB, Juri M, Bonomi A, Gomulski L, Scannapieco AC, Segura DF, Malacrida A, Cladera JL, Gasperi G (2014) Microsatellite markers from the “South American fruit fly” Anastrepha fraterculus: a valuable tool for population genetic analysis and SIT applications. BMC Genet 15(S13):8

    Google Scholar 

  • Lavergne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc Natl Acad Sci USA 104:3883–3888. https://doi.org/10.1073/pnas.0607324104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leinonen T, O’Hara RB, Cano JM, Merila J (2008) Comparative studies of quantitative trait and neutral marker divergence: a meta-analysis. J Evol Biol 21:1–17

    Article  CAS  PubMed  Google Scholar 

  • Loiselle B, Sork V, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425

    Article  Google Scholar 

  • Manel S, Gaggiotti O, Waples R (2005) Assignment methods: matching biological questions with appropriate techniques. Trends Ecol Evol 20:136–142

    Article  PubMed  Google Scholar 

  • Merilä J, Crnokrak P (2001) Comparison of genetic differentiation at marker loci and quantitative traits. J Evol Biol 14:892–903

    Article  Google Scholar 

  • Moran P (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23

    Article  CAS  PubMed  Google Scholar 

  • Morello J, Matteucci SD, Rodríguez AF, Silva M (2012) Ecorregiones y complejos ecosistémicos argentinos. Orientación Gráfica Editora, Buenos Aires, Argentina

  • Nei M, Chesser R (1983) Estimation of fixation indices and gene diversities. Hum Genet 47:253–259. https://doi.org/10.1111/j.1469-1809.1983.tb00993.x

    Article  CAS  Google Scholar 

  • Nomura T (2008) Estimation of effective number of breeders from molecular coancestry of single cohort sample. Evol Appl 1:462–474

    Article  PubMed  PubMed Central  Google Scholar 

  • Oroño LE, Paulin LE, Alberti AC, Hilal M, Ovruski SM, Vilardi JC, Rull J, Aluja M (2013) Effect of host plant chemistry on genetic differentiation and reduction of gene flow among Anastrepha fraterculus (Diptera: Tephritidae) populations exploiting sympatric synchronic hosts. Environ Entomol 42:790–798

    Article  PubMed  CAS  Google Scholar 

  • Papaj PR, Roitberg BD, Opp SB (1989) Serial effects of host infestation on egg allocation by the Mediterranean fruit fly: a rule of thumb and its functional significance. J Anim Ecol 58:955–970

    Article  Google Scholar 

  • Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 6:7–11

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prokopy RJ, Ziegler JR, Wong TTY (1978) Deterrence of repeated oviposition by fruit-marking pheromone in Ceratitis capitata (Diptera: Tephritidae). J Chem Ecol 4:55–63

    Article  CAS  Google Scholar 

  • Pujol B, Wilson AJ, Ross RIC, Pannell JR (2008) Are Q(ST)-F(ST) comparisons for natural populations meaningful? Mol Ecol 17:4782–4785

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ Accessed 23 April 2021

  • Rodriguez AI, Ferreyra LI, Gómez Cendra PV, Vilardi JC (2019) Cryptic genetic structure in an Argentinian population of Anastrepha fraterculus (Diptera: Tephritidae) evidenced by SSR markers and quantitative traits. Eur J Entomol 116:109–122. https://doi.org/10.14411/eje2019013

  • Roitberg BD, Prokopy RJ (1984) Host visitation sequence as a determinant of search persistence in fruit parasitic tephritid flies. Oecologia 62:7–12

    Article  PubMed  Google Scholar 

  • Roser LG, Ferreyra LI, Saidman BO, Vilardi JC (2017) EcoGenetics: an R package for the management and exploratory analysis of spatial data in landscape genetics. Mol Ecol Resour 17:e241–e250. https://doi.org/10.1111/1755-0998.12697

    Article  PubMed  Google Scholar 

  • Rousset F, Raymond M (1995) Testing heterozygote excess and deficiency. Genetics 140:1413–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Arce R, Islam M-S, Aluja M, McPheron BA (2019) Genetic variation in Anastrepha obliqua (Diptera: Tephritidae) in a highly diverse tropical environment in the Mexican state of Veracruz. J Econ Entomol 112:2952–2965. https://doi.org/10.1093/jee/toz223

    Article  CAS  PubMed  Google Scholar 

  • Ryberg WA, Hill MT, Painter CW, Fitzgerald LA (2013) Landscape pattern determines neighborhood size and structure within a lizard population. PLoSONE 8:e56856. https://doi.org/10.1371/journal.pone.0056856

    Article  CAS  Google Scholar 

  • Schliserman P, Aluja M, Rull J, Ovruski SM (2014) Habitat degradation and introduction of exotic plants favor persistence of invasive species and population growth of native polyphagous fruit fly pests in a Northwestern Argentinean mosaic. Biol Invasions 16:2599–2613. https://doi.org/10.1007/s10530-014-0690-5

    Article  Google Scholar 

  • Schliserman P, Aluja M, Rull J, Ovruski SM (2016) Temporal diversity and abundance patterns of parasitoids of fruit-infesting Tephritidae (Diptera) in the Argentinean yungas: implications for biological control. Environ Entomol 45:1184–1198. https://doi.org/10.1093/ee/nvw077

    Article  PubMed  Google Scholar 

  • Selivon D, Perondini ALP, Morgante JS (2005) A genetic-morphological characterization of two cryptic species of the Anastrepha fraterculus complex (Diptera: Tephritidae). Ann Entomol Soc Am 98:367–381

    Article  CAS  Google Scholar 

  • Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47:264–279

    Article  PubMed  Google Scholar 

  • Spitze K (1993) Population structure in Daphnia obtusa: quantitative genetic and allozymic variation. Genetics 135:367–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steck GJ (1991) Biochemical systematics and population genetic structure of Anastrepha fraterculus and related species (Diptera: Tephritidae). Ann Entomol Soc Am 84:10–28. https://doi.org/10.1093/aesa/84.1.10

    Article  CAS  Google Scholar 

  • Steck GJ (1999) Taxonomic status of Anastrepha fraterculus. In: Proceedings workshop, The South American fruit fly Anastrepha fraterculus (Wied.): advances in artificial rearing, taxonomic status and biological studies. IAEA-TEC. DOC-1064. Vienna, Austria, pp 13–20

  • Steeves TE, Johnson JA, Hale ML (2017) Maximising evolutionary potential in functional proxies for extinct species: a conservation genetic perspective on de-extinction. Funct Ecol 31:1032–1040

    Article  Google Scholar 

  • Utgés ME (2012) Supervivencia y dispersión en moscas de los frutos del género Anastrepha (Diptera: Tephritidae): efecto de la alimentación post-teneral. Ph.D. Dissertation, Universidad de Buenos Aires

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MicroChecker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol 4:535–538

    Article  CAS  Google Scholar 

  • Vera MT, Ruiz MJ, Oviedo A, Abraham S, Mendoza M, Segura DF, Kouloussis NA, Willink E (2013) Fruit compounds affect male sexual success in the South American fruit fly, Anastrepha fraterculus (Diptera: Tephritidae). J Appl Entomol 137:2–10. https://doi.org/10.1111/j.1439-0418.2010.01516.x

    Article  CAS  Google Scholar 

  • Vilardi JC, Ferreyra LI, Freilij D, Gómez-Cendra PV (2021) Ecological phylogeography and coalescent models suggest a linear population expansion of Anastrepha fraterculus (Diptera: Tephritidae) in Southern South America. Biol J Linn Soc, blab029. https://doi.org/10.1093/biolinnean/blab029 Accessed 23 April 2021

  • Wei SJ, Cao LJ, Gong YJ, Shi BC, Wang S, Zhang F, Guo XJ, Wang YM, Chen XX (2015) Population genetic structure and approximate Bayesian computation analyses reveal the southern origin and northward dispersal of the oriental fruit moth Grapholita molesta (Lepidoptera: Tortricidae) in its native range. Mol Ecol 24:4094–4111

    Article  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright S (1946) Isolation by distance under diverse systems of mating. Genetics 31:39–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354

    Article  CAS  PubMed  Google Scholar 

  • Yamada SM, Selivon D (2001) Rose, an eye color mutation in a species of the Anastrepha fraterculus complex (Diptera:Tephritidae). Ann Entomol Soc Am 94:592–595

    Article  CAS  Google Scholar 

  • Troya H, Norrbom A, Pineda J (2020) Two new species of Anastrepha (Diptera: Tephritidae) from Ecuador. Zootaxa 4820:366–372. https://doi.org/10.11646/zootaxa.4820.2.9

Download references

Acknowledgements

The authors wish to express their gratitude to Dr. M. T. Vera for coordinating and collaborating with the field sampling, to Ms. M. J. Ruiz for the sampling collection, and to Mr. S. Szpilbarg for his help in sample processing. We are also indebted with two anonymous reviewers which contributed to improve the present manuscript.

Funding

This research was supported with funding from Universidad de Buenos Aires (UBA) UBACYT 20020170100270BA granted to Dr. Juan Cesar Vilardi and Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT) PICT 2018–02567 granted to Dr. María Isabel Remis.

Author information

Authors and Affiliations

Authors

Contributions

LIF, PGC, and JCV designed experiments and collections. LIF, AIR, and PGC processed all the biological material; DF and LIF collected molecular data; and PGC collected morphometric data. AIR contributed to the molecular and morphometric data collection. DF, LIF, JCV, and PGC analysed the data. DF drafted the initial version of the manuscript. All the authors commented and edited later versions of the manuscript and approved its final version.

Corresponding author

Correspondence to Paula Gómez-Cendra.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent for publication

The authors consent to the publication of all submitted data.

Additional information

Edited by Alberto S Corrêa

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freilij, D., Ferreyra, L.I., Vilardi, J.C. et al. Fine Scale Microevolutionary and Demographic Processes Shaping a Wild Metapopulation Dynamics of the South American Fruit Fly Anastrepha fraterculus. Neotrop Entomol 51, 339–355 (2022). https://doi.org/10.1007/s13744-022-00944-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-022-00944-z

Keywords

Navigation