Skip to main content
Log in

Magnetically retrievable and reusable BiVO4/Li0.5Fe2.5O4 nanocomposites for photocatalytic disintegration of methylene blue

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

BiVO4 (BVO) and Li0.5Fe2.5O4 (LFO) semiconducting ceramic oxides were synthesized by solid state and auto-combustion methods, respectively. Three different magnetic composites (BVO25/LFO75, BVO50/LFO50 and BVO75/LFO25) between BVO and LFO were prepared and characterized systematically using powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDAX), Transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS) and vibrating-sample magnetometer (VSM technique). PXRD studies confirmed the formation of single phase BVO, LFO and the composites. SEM analysis revealed the irregular shaped particles of the samples with average sizes ~ 70 nm. As confirmed from the magnetic measurements using VSM, all composites were found to be magnetic in nature and the magnetization decreases with increasing BVO content in the composites. Using DRS, band gaps of all samples were estimated and are in the visible region (2.09–2.37 eV). All samples were employed as photocatalysts for the degradation of methylene blue under visible light irradiation and the rate of degradation has been monitored using UV–Vis spectroscopy. The nanocomposite with 50 wt% BVO + 50 wt% LFO exhibited maximum efficiency in the presence of H2O2. The catalyst can be retrievable magnetically and reusable up to 5 cycles, without considerable drop in its activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H.M. Pignon, C.F. Brasquet, P.L. Cloirec, Sep. Purif. Technol. 31, 3 (2003). https://doi.org/10.1016/S1383-5866(02)00147-8

    Article  CAS  Google Scholar 

  2. W.F. Ritter, J. Environ. Sci. Health B 25, 1 (1990). https://doi.org/10.1080/03601239009372674

    Article  CAS  PubMed  Google Scholar 

  3. K. Ravikumar, B. Deebika, K. Balu, J. Hazard. Mater. 122, 75 (2005). https://doi.org/10.1016/j.jhazmat.2005.03.008

    Article  CAS  PubMed  Google Scholar 

  4. S. Adhikari, K.S. Chandra, D.H. Kim, G. Madras, D. Sarkar, Adv. Powder Technol. 29, 1591 (2018). https://doi.org/10.1016/j.apt.2018.03.024

    Article  CAS  Google Scholar 

  5. M.I. Din, R. Khalid, J. Najeeb, Z. Hussain, J. Clean Prod. 298, 126567 (2021). https://doi.org/10.1016/j.jclepro.2021.126567

  6. S.D. Khairnar, D.S. Shirsath, P.S. Patil, V.S. Shrivastava, SN Appl. Sci. 2, 822 (2020). https://doi.org/10.1007/s42452-020-2607-5

    Article  CAS  Google Scholar 

  7. M. Mousavi, A.H. Yangjeh, D. Seifzadeh, K. Nakata, S. Vadivel, Adv. Powder Technol. 30, 524 (2019). https://doi.org/10.1016/j.apt.2018.12.003

    Article  CAS  Google Scholar 

  8. X. Zhang, Q. Lin, S. Luo, K. Ruan, K. Peng, Appl. Surf. Sci. 442, 322 (2018). https://doi.org/10.1016/j.apsusc.2018.02.148

    Article  CAS  Google Scholar 

  9. M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q. Zhang, J. Hazard. Mater. 211–212, 317 (2012). https://doi.org/10.1016/j.jhazmat.2011.10.016

    Article  CAS  PubMed  Google Scholar 

  10. M.A. Chamjangali, G. Bagherian, B. Bahramian, B.F. Rad, Int. J. Environ. Sci. Technol. 12, 151 (2015). https://doi.org/10.1007/s13762-014-0669-x

    Article  CAS  Google Scholar 

  11. F. Tian, Z.S. Wu, Q.Y. Chen, Y.J. Yan, G. Cravotto, Z.L. Wu, Appl. Surf. Sci. 351, 104 (2015). https://doi.org/10.1016/j.apsusc.2015.05.133

    Article  CAS  Google Scholar 

  12. R. Kumar, G. Kumar, A. Umar, Mater. Lett. 97, 100 (2013). https://doi.org/10.1016/j.matlet.2013.01.044

    Article  CAS  Google Scholar 

  13. M.A. Rauf, S.S. Ashraf, Chem. Eng. J. 209, 520 (2012). https://doi.org/10.1016/j.cej.2012.08.015

    Article  CAS  Google Scholar 

  14. X. Zhang, Z. Ai, F. Jia, L. Zhang, X. Fan, Z. Zou, Mater. Chem. Phys. 103, 162 (2007). https://doi.org/10.1016/j.matchemphys.2007.02.008

    Article  CAS  Google Scholar 

  15. S. Chakrabarti, B.K. Dutta, J. Hazard. Mater. 112, 269 (2004). https://doi.org/10.1016/j.jhazmat.2004.05.013

    Article  CAS  PubMed  Google Scholar 

  16. M. Nasr, C. Eid, R. Habchi, P. Miele, M. Bechelany, Chemsuschem 11, 3023 (2018). https://doi.org/10.1002/cssc.201800874

    Article  CAS  PubMed  Google Scholar 

  17. C.G. Tsai, W.J. Tseng, Ceram. Int. 46, 14529 (2020). https://doi.org/10.1016/j.ceramint.2020.02.252

    Article  CAS  Google Scholar 

  18. R. Vinu, G. Madras, J. Indian Inst. Sci. 90, 189 (2010)

    CAS  Google Scholar 

  19. L. Zhou, W. Wang, S. Liu, L. Zhang, H. Xu, W. Zhu, J. Mol. Catal. A Chem. 252, 120 (2006). https://doi.org/10.1016/j.molcata.2006.01.052

    Article  CAS  Google Scholar 

  20. Y. Yang, C. Zhang, C. Lai et al., Adv. Colloid Interface Sci. 254, 76 (2018). https://doi.org/10.1016/j.cis.2018.03.004

    Article  CAS  PubMed  Google Scholar 

  21. S.G. Kumar, K.S.R.K. Rao, Appl. Surf. Sci. 391, 124 (2017). https://doi.org/10.1016/j.apsusc.2016.07.081

    Article  CAS  Google Scholar 

  22. A. Malathi, J. Madhavan, M.P.A. Kumar, P. Arunachalam, Appl. Catal. A Gen. 555, 47 (2018). https://doi.org/10.1016/j.apcata.2018.02.010

    Article  CAS  Google Scholar 

  23. W. Ma, Z. Li, W. Liu, Ceram. Int. 41, 4340 (2015). https://doi.org/10.1016/j.ceramint.2014.11.123

    Article  CAS  Google Scholar 

  24. R. Mohan, A.G. Jineesh, N.M. Prabu, Environ. Eng. Res. 27, 210161 (2022). https://doi.org/10.4491/eer.2021.161

  25. A. Sunny, N.M. Prabu, Indian J. Chem. A 59A, 775 (2020)

    CAS  Google Scholar 

  26. M. George, S.S. Nair, A.M. John, P.A. Joy, M.R. Anantharaman, J. Phys. D Appl. Phys. 39, 900 (2006). https://doi.org/10.1088/0022-3727/39/5/002

    Article  CAS  Google Scholar 

  27. H.Q. Jiang, H. Endo, H. Natori, M. Nagai, K. Kobayashi, J. Eur. Ceram. Soc. 28, 2955 (2008). https://doi.org/10.1016/j.jeurceramsoc.2008.05.002

    Article  CAS  Google Scholar 

  28. K.D. Martinson, I.B. Panteleev, A.P. Shevchik, V.I. Popkov, Mater. Lett. 9, 475 (2019). https://doi.org/10.22226/2410-3535-2019-4-475-479

  29. B.X. Lei, P. Zhang, S.N. Wang, Y. Li, G.L. Huang, Z.F. Sun, Mater. Sci. Semicond. Process 30, 429 (2015). https://doi.org/10.1016/j.mssp.2014.10.044

    Article  CAS  Google Scholar 

  30. G.D. Tarigh, F. Shemirani, N.S. Maz’hari, RSC Adv. 5, 35070 (2015). https://doi.org/10.1039/C4RA15593A

    Article  CAS  Google Scholar 

  31. G. Aravind, D. Ravinder, V. Nathanial, Phys. Res. Int. 2014, 672739 (2014). https://doi.org/10.1155/2014/672739

  32. W.J. Yin, S.H. Wei, M.M.A. Jassim, J. Turner, Y. Yan, Phys. Rev. B 83, 155102, (2011). https://doi.org/10.1103/PhysRevB.83.155102.

  33. W.J. Jo, J.W. Jang, K.J. Kong, H.J. Kang, J.Y. Kim, H. Jun, P.S. Parmar, J.S. Lee, Angew. Chem. 51, 3147 (2012). https://doi.org/10.1002/anie.201108276

    Article  CAS  Google Scholar 

  34. K. Dileep, B. Loukya, N. Pachauri, A. Gupta, R. Datta, J. Appl. Phys. 116, 103505 (2014). https://doi.org/10.1063/1.4895059

  35. Q.C. Sun, H. Sims, D. Mazumdar, et al. Phys. Rev. B 86, 205106 (2012). https://doi.org/10.1103/PhysRevB.86.205106

  36. P.N. Anantharamaiah, S. Mondal, K.S. Manasa, S. Saha, M. Pai, Ceram. Int. 46, 1220 (2020). https://doi.org/10.1016/j.ceramint.2019.08.276

    Article  CAS  Google Scholar 

  37. P.N. Anantharamaiah, B.P. Rao, H.M. Shashanka, J.A. Chelvane, V. Khopkar, B. Sahoo, Phys. Chem. Chem. Phys. 23, 1694 (2021). https://doi.org/10.1039/D0CP05448H

    Article  CAS  PubMed  Google Scholar 

  38. W. Remlalfaka, C. Murugesan, P.N. Anantharamaiah, N.M. Prabu, Ceram. Int. 47, 11526 (2021). https://doi.org/10.1016/j.ceramint.2020.12.281

    Article  CAS  Google Scholar 

  39. P.N. Anantharamaiah, K.S. Manasa, Y.C. Sunil Kumar, Solid State Sci. 106, 106302 (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106302

  40. K. Pingmuang, J. Chen, A. Nattestad, W. Kangwansupamonkon, S. Phanichphant, J. Environ. Sci. 3, 69 (2014)

    Google Scholar 

  41. Q. Li, S. Mahendra, D.Y. Lyon, L. Brunet, M.V. Liga, D. Li, P.J.J. Alvarez, Water Res. 42, 4591 (2008). https://doi.org/10.1016/j.watres.2008.08.015

    Article  CAS  PubMed  Google Scholar 

  42. C. Adán, J. Marugán, S. Obregón, G. Colón, Catal. Today 240, 93 (2015). https://doi.org/10.1016/j.cattod.2014.03.059

    Article  CAS  Google Scholar 

  43. J. Su, L. Guo, N. Bao, C.A. Grimes, Nano Lett. 11, 1928 (2011). https://doi.org/10.1021/nl2000743

    Article  CAS  PubMed  Google Scholar 

  44. S. Selvarajan, A. Suganthi, M. Rajarajan, K. Arunprasath, Powder Technol. 307, 203 (2017). https://doi.org/10.1016/j.powtec.2016.10.069

    Article  CAS  Google Scholar 

  45. C. Yua, K. Yang, J.C. Yu, F. Cao, X. Li, X. Zhou, J. Alloys Compd. 509, 4547 (2011). https://doi.org/10.1016/j.jallcom.2011.01.100

    Article  CAS  Google Scholar 

  46. W. Zhang, M. Wang, W. Zhao, B. Wang, Dalton Trans. 42, 15464 (2013). https://doi.org/10.1039/C3DT52068D

    Article  CAS  PubMed  Google Scholar 

  47. X. Tian, Y. Zhu, W. Zhang, Z. Zhang, R. Hua, J. Mater. Sci.: Mater. Electron. 30, 19335 (2019). https://doi.org/10.1007/s10854-019-02295-9

    Article  CAS  Google Scholar 

  48. Z. Zhao, H. Dai, J. Deng, Y. Liu, C.T. Au, Chin. J. Catal. 34, 1617 (2013). https://doi.org/10.1016/S1872-2067(12)60632-9

    Article  CAS  Google Scholar 

  49. Y. Zhai, Y. Yin, X. Liu, Y. Li, J. Wang, C. Liu, G. Bian, Mater. Res. Bull. 89, 297 (2017). https://doi.org/10.1016/j.materresbull.2017.01.011

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Micro and Nano Characterization Facility, CeNSE, Indian Institute of Science, Bangalore, India for their support in characterization, also the research group of Prof. Rajeev Ranjan, Indian Institute of science, Bangalore, India for the magnetic measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Manikanda Prabu.

Ethics declarations

Conflict of interest

The authors declare that there are no known conflict of interest or others that can influence the study reported in this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 4545 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hari, E., Anantharamaiah, P.N. & Prabu, N.M. Magnetically retrievable and reusable BiVO4/Li0.5Fe2.5O4 nanocomposites for photocatalytic disintegration of methylene blue. J IRAN CHEM SOC 20, 1891–1902 (2023). https://doi.org/10.1007/s13738-023-02806-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02806-w

Keywords

Navigation