Skip to main content

Advertisement

Log in

Fucoxanthin from the Antarctic Himantothallus grandifollius as a sensitizer in DSSC

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Fucoxanthin extracts obtained from the Antarctic brown algae Himantothallus grandifollius were explored in DSSC, achieving 0.14% conversion efficiency when co-sensitized with round silver nanoparticles. Fucoxanthin has some essential characteristics fulfilling necessary attributes for a sensitizer. It is adsorbed to the FTO/TiO2 electrode as confirmed by FTIR and TG-DSC techniques. Besides, establishing bonds between the –OH functional groups of fucoxanthin and titanium increased the compound's stability. And also, fucoxanthin has an adequate redox potential of 1.3 V to allow electron transfer to the TiO2. These characteristics suggest the application of fucoxanthin as a sensitizer in DSSC, particularly when co-adsorbed with silver nanoparticles. The presence of nanoparticles assured a better surface coverage, and integrated within the fucoxanthin net, improved the recombination times, fill factor and Voc values of the assembled cells and, thus, the conversion efficiency. Extracted easily from brown seaweeds, the application of fucoxanthin as a sensitizer in dye-solar cells offers an alternative to profit large amounts of biomass from, for example, invasive sources such as Sargasso.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Bisquert, D. Cahen, G. Hodes, S. Rühle, A. Zaban, J. Phys. Chem. B 108, 8106 (2004)

    CAS  Google Scholar 

  2. F. Gao, Y. Wang, D. Shi, J. Zhang, M.K. Wang, X.Y. Jing, R. Humphry-Baker, P. Wang, S.M. Zakeeruddin, M. Grätzel, J. Am. Chem. Soc. 130, 10720 (2008)

    CAS  PubMed  Google Scholar 

  3. A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Grätzel, Science 334, 629 (2011)

    CAS  PubMed  Google Scholar 

  4. B. O’Regan, M. Grätzel, Nature 353, 737 (1991)

    CAS  Google Scholar 

  5. H. Chang, H.M. Wu, T.L. Chen, K.D. Huang, C.S. Jwo, Y.J. Lo, J. Alloys Compd. 495, 606 (2010)

    CAS  Google Scholar 

  6. X.-F. Wang, A. Matsuda, Y. Koyama, H. Nagae, S. Sasaki, H. Tamiaki, Y. Wada, Chem. Phys. Lett 423, 470 (2006)

    CAS  Google Scholar 

  7. D. Zhang, M. Stojanovic, Y. Ren, Y. Cao, F.T. Eickemeyer, E. Socie, N. Vlachopoulos, J.-E. Moser, S.M. Zakeeruddin, A. Hagfeldt, M. Grätzel, Nat. Commun. 12, 1777 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. G. Calogero, A. Bartolotta, G. DiMarco, A. Di Carlo, F. Bonaccorso, Chem. Soc. Rev. 44, 3244 (2015)

    CAS  PubMed  Google Scholar 

  9. H. Zhou, L. Wu, Y. Gao, T. Ma, J. Photochem. Photobiol. A Chem. 219, 188 (2011)

    CAS  Google Scholar 

  10. S. Singh, I. Ch Maurya, S. Sharma, S.P.S. Kushwaha, P. Srivastava, L. Bahadur, Optik 243, 167331 (2021)

    CAS  Google Scholar 

  11. R. Concepcion, J. Alejandrino, C.H. Mendigoria, E. Dadios, A. Bandala, E. Sybingco, R.R. Vicerra, Optik 242, 166931 (2021)

    CAS  Google Scholar 

  12. A. Rahul, P.K. Singh, B. Bhattacharya, Z.H. Khan, Optik 165, 186 (2018)

    CAS  Google Scholar 

  13. B.N. Mariotti, C. Gerbaldi, M. Bonomo, F. Bella, L. Fagiolari, N. Barbero, C. Barolo, Green Chem. 22, 7168 (2020)

    CAS  Google Scholar 

  14. M.L. Parisi, A. Sinicropi, R. Basosi, Int. J. Heat Technol. 29, 161 (2011)

    Google Scholar 

  15. V. Shanmugam, S. Manoharan, A. Sharafali, S. Anandan, R. Murugan, Spectrochim. Acta A: Mol. Biomol. Spectros. 135, 947 (2015)

    CAS  Google Scholar 

  16. A. Lim, N. Haji-Manaf, K. Tennakoon, J. Biophys. 510467 (2015).

  17. S. Armeli Minicante, E. Ambrosi, M. Back, J. Barichello, E. Cattaruzza, F. Gonella, E. Scantamburlo, E. Trave, J. Phys. D: Appl. Phys. 49, 295601(2016)

  18. F. Kabir, S. Sakib, N. Matin, Optik 181, 458 (2018)

    Google Scholar 

  19. K. Ji-Hye K. Dong-Hyuk, S. Ju-Hee, K. Hyung-Jun, Energies 15, 219 (2022).

  20. A.G. Pereira, M. Fraga-Corral, P. Garcia-Oliveira, C. Lourenço-Lopes, M. Carpena, M.A. Prieto, J. Simal-Gandara, Mar. Drugs 19, 178 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. J. Milledge, B. Nielsen, D. Bailey, Rev. Environmen. Sci. Bio/Technol. 15 (2016).

  22. A. Gomez-Zavaglia M.A. Prieto Lage, C. Jimenez-Lopez, J.C. Mejuto, J. Simal-Gandara, Antioxidants 8, 406 (2019).

  23. N. Sharma, P. Sharma, J. Adv. Plant Biol. 1, 1 (2017)

    Google Scholar 

  24. C. Yamashita, I.C. Freitas Moraes, A.G. Ferreira, C.C. Zanini Branco, P. Guilherme, I. Branco, Carbohydr. Polym. 251, 116992 (2021).

  25. H. Maeda, M. Hosokawa, T. Sashima, K. Murakami-Funayama, K. Miyashita, Mol. Med. Rep. 2, 897 (2009)

    CAS  PubMed  Google Scholar 

  26. A.G. Pereira, P. Otero, J. Echave, A. Carreira-Casais, F. Chamorro, N. Collazo, A. Jaboui, C. Lourenço-Lopes, R. Simal-Gandara, M.A. Prieto, Mar. Drugs 19, 188 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. R. Hikihara, Y. Yamasaki, T. Shikata, N. Nakayama, S. Sakamoto, S. Kato, H. Hatate, R. Tanaka, J. Aquat. Food Prod. Technol. 29, 461 (2020)

    CAS  Google Scholar 

  28. M. Ito, K. Koba, R. Hikihara, M. Ishimaru, T. Shibata, H. Hatate, R. Tanaka, Food Chem. 255, 147 (2018)

    CAS  PubMed  Google Scholar 

  29. R.S. Alberte, A.L. Friedman, D.L. Gustafson, M.S. Rudnick, H. Lyman, Biochim. Biophys. Acta. 635, 304 (1981)

    CAS  PubMed  Google Scholar 

  30. L. Caron, D. Douady, A. De Martino, M. Quinet, Cah. Biol. Mar. 42, 109–124 (2001)

    Google Scholar 

  31. F. Hentati, L. Tounsi, D. Djomdi, G. Pierre, C. Delattre, A.V. Ursu, I. Fendri, S. Abdelkafi, P. Michaud, Molecules 25, 3152 (2020)

    CAS  PubMed Central  Google Scholar 

  32. V. Kuznetsova, P. Chábera, R. Litvín, T. Polívka, M. Fuciman, J. Phys. Chem. B 121, 4438 (2017)

    CAS  PubMed  Google Scholar 

  33. K. Mikami, M. Hosokawa, Int. J. Mol. Sci. 14, 13763 (2013)

    PubMed  PubMed Central  Google Scholar 

  34. T. Maoka, J. Nat. Med. 74, 1 (2020)

    CAS  PubMed  Google Scholar 

  35. A.K.L. Dissanayake, J.M.K. Kumari, G.K.R. Senadeera, C.A. Thotawatthage, J. Appl. Electrochem. 46, 47 (2016)

    CAS  Google Scholar 

  36. M.F. Cerdá, S. Botasini, Surf. Interface Anal. 52, 980 (2020)

    Google Scholar 

  37. S. Saravanan, R. Kato, M. Balamurugan, S. Kaushik, T. Soga, J. Sci.: Adv. Mater. Dev. 2, 418 (2017)

    Google Scholar 

  38. T. Tin, B.K. Sovacool, D. Blake, P. Magill, S. El Naggar, S. Lidstrom, K. Ishizawa, J. Berte, Renew. Energy 35, 1715 (2010)

    Google Scholar 

  39. N. Roslan, M.E. Ya’acob, D. Jamaludin, Y. Hashimoto, M.H. Othman, A. Noor Iskandar, M.R. Ariffin, M.H. Ibrahim, J. Mailan, A.H. Jamaluddin, M.F. Mail, B.S.N. Aliah, L. Lu Agronomy 11, 631 (2021)

  40. A. Cannavale, F. Martellotta, F. Fiorito, U. Ayr, Energies 13, 1929 (2020)

    CAS  Google Scholar 

  41. A Roy, A Ghosh, S Bhandari, P Selvaraj, S Sundaram, T.P Mallick, J. Phys. Chem. C 123, 23834 (2019).

  42. J.J. Marizcurrena, S. Castro-Sowinski, M.F. Cerdá, Environm. Sustain. (2021). https://doi.org/10.1007/s42398-021-00168-8

    Article  Google Scholar 

  43. J.G. Yañuk, F.M. Cabrerizo, F.G. Dellatorre, M.F. Cerdá, Energy Rep. 6, 25 (2020)

    Google Scholar 

  44. T. Montagni, P. Enciso, J.J. Marizcurrena, S. Castro-Sowinski, C. Fontana, D. Davyt, M.F. Cerdá, Environ. Sustain. 1, 89 (2018)

    Google Scholar 

  45. G. Rajauria, B. Foley, N. Abu-Ghannam, Food Res. Int. 99, 995 (2017)

    CAS  PubMed  Google Scholar 

  46. S.C. Foo, K.S. Khoo, C.W. Ooi, P.L. Show, N.M.H. Khong, F.M. Yusoff, Front. Bioeng Biotechnol. (2021). https://doi.org/10.3389/fbioe.2020.546067

    Article  PubMed  PubMed Central  Google Scholar 

  47. A. Fung, N. Hamid, J. Lu, Food Chem. 136, 1055 (2013)

    CAS  PubMed  Google Scholar 

  48. E.B. Medina Perez, M.C. Ruiz-Domìnguez, J.E. Morales, P. Cerezal Mezquita, DYNA 86, 174 (2019).

  49. L.J. Wang, Y. Fan, R.L. Parsons, G.R. Hu, P.Y. Zhang, F.L. Li, Mar. Drugs 1, 3 (2018)

    Google Scholar 

  50. D. Noviendri, I. Jaswir, M. Taher, F. Mohamed, H.M. Salleh, I.A. Noorbatcha, F. Octaviant, W. Lestari, R. Hendri, H. Ahmad, K. Miyashita, A. Abdullah, J. Oleo Sci. 65, 641 (2016)

    CAS  PubMed  Google Scholar 

  51. B.H. Stuart, Infrared spectroscopy: fundamentals and applications (John Wiley & Sons Ltd, England, 2004).

  52. A. Zheltikov, in Course notes on the interpretation of infrared and Raman spectra, ed. By D.W Mayo, F.A Miller, R.W Hannah (John Wiley & Sons, England, 2005) p. 567.

  53. H. Kartikaningsih, E.D. Mufti, A.E. Nurhanief, AIP Conf. Proc. 1844, 030009 (2017)

    Google Scholar 

  54. D. Liu, Y. Gao, L.D. Kispert, J. Electroanal. Chem. 488, 140 (2000)

    CAS  Google Scholar 

  55. D. Niedzwiedzki, J.F. Rusling, H.A. Frank, Chem. Phys. Lett. 415, 308 (2005)

    CAS  Google Scholar 

  56. P. Gao, C.L. Lin, C. Shannon, G.N. Salaita, J.H. White, S.A. Chaffins, A.T. Hubbard, Langmuir 7, 1515 (1991)

    CAS  Google Scholar 

  57. G. Tremiliosi-Filho, E.R. Gonzalez, A.J. Motheo, E.M. Belgsir, J.M. Léger, C. Lamy, J. Electroanal. Chem 444, 31 (1998)

    CAS  Google Scholar 

  58. J. Zhu, X. Sun, X. Chen, S. Wang, D. Wang, Food Chem. 211, 365 (2016)

    CAS  PubMed  Google Scholar 

  59. A. Samide, B. Tutunaru, J. Therm. Anal. Calorim. 127, 597 (2017)

    CAS  Google Scholar 

  60. A. Kay, M. Graetzel, J. Phys. Chem. 97, 6272 (1993)

    CAS  Google Scholar 

  61. G.P. Smestad, Sol. Energy Mater. Sol. Cells 55, 157 (1998)

    CAS  Google Scholar 

  62. Y.X. Weng, J.Z. Xu, J. Pan, K.L. Lin, L. Wang, G.Z. Yang, Acta Bot. Sin. 42, 1215 (2000)

    CAS  Google Scholar 

  63. D.K. Schwartz, Annu. Rev. Phys. Chem. 52, 107 (2001)

    CAS  PubMed  Google Scholar 

  64. F. Schreiber, Prog. Surf. Sci. 65, 151 (2000)

    CAS  Google Scholar 

  65. S. Borbon, S. Lugo, D. Pourjafari, N. Pineda Aguilar, G. Oskam, I. Lopez, ACS Omega 5, 10977 (2020).

  66. L. Taiz, E. Zeiger, I.M. Møller, A. Murphy, Plant physiology and development (Oxford University Press, England, 2014)

    Google Scholar 

  67. L.-J. Wang, Y. Fan, R.L. Parsons, G.-R. Hu, P.-Y. Zhang, F.-L. Li, Mar. Drugs 16, 33 (2018)

    PubMed Central  Google Scholar 

  68. N.G. Bastús, F. Merkoçi, J. Piella, V. Puntes, Chem. Mater. 26, 2836 (2014)

    Google Scholar 

  69. J. Bisquert, J. Electroanal. Chem. 646, 43 (2010)

    CAS  Google Scholar 

  70. F.I. Chowdhury, M.H. Buraidah, A.K. Arof, B.E. Mellander, I.M. Noor, Sol. Energy 196, 379 (2020)

    CAS  Google Scholar 

  71. T. Lana-Villarreal, G. Boschloo, G.A. Hagfeldt, J. Phys. Chem. C 111, 5549 (2007)

    CAS  Google Scholar 

  72. O. Akhavan, M. Abdolahad, A. Esfandiar, M. Mohatashamifar, J. Phys. Chem. C 114(30), 12955 (2010)

    CAS  Google Scholar 

  73. O. Akhavan, E. Ghaderi, J. Phys. Chem. C 113, 20214 (2009)

    CAS  Google Scholar 

  74. F. De Rossi, T. Pontecorvo, T.M. Brown, Appl. Energy 156, 413 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors want to express their gratitude to the Uruguayan Antarctic Institute. MFC and MR are ANII (Agencia Nacional de Investigación e Innovación) and PEDECIBA (Programa de Desarrollo de las Ciencias Básicas) researchers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Fernanda Cerdá.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Bon, M., Rodríguez Chialanza, M. & Cerdá, M.F. Fucoxanthin from the Antarctic Himantothallus grandifollius as a sensitizer in DSSC. J IRAN CHEM SOC 19, 3627–3636 (2022). https://doi.org/10.1007/s13738-022-02560-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-022-02560-5

Keywords

Navigation