Skip to main content

Advertisement

Log in

Highly selective and sensitive response of curcumin thioether derivative for the detection of hypochlorous acid by fluorimetric method

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A new fluorescent (TMCD) probe has been developed for the detection of hypochlorous acid (HClO) with sensitive response toward HClO. The probe color changes from green to yellow during the addition of HClO following PET OFF mechanism. The chemodosimeter promoted a selective response to hypochlorous acid compared to other ROS and RNS with a detection limit at 89 nM. The binding mechanism of probe with guest molecules has been confirmed by NMR spectroscopy, Mass spectroscopy and DFT calculations.

Graphical abstract

Research highlights

  1. 1.

    The sensor TMDC was synthesized by a simple method with high yield.

  2. 2.

    The sensor colorimetric and fluorimetrically detection of HClO very easily in aqueous medium.

  3. 3.

    The probe was easily recognized toxic ROS form of HClO compare than other ROS.

  4. 4.

    The HClO detection of limit 89nM in aqueous medium was reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y.K. Yue, F.J. Huo, C.X. Yin, J.O. Escobedo, R.M. Strongin, Recent progress in chromogenic and fluorogenicchemosensors for hypochlorous acid. Analyst 141, 1859–1873 (2019). https://doi.org/10.1039/C6AN00158K

    Article  CAS  Google Scholar 

  2. N.J. Mehta, K. Asmaro, D.J. Hermiz, M.M. Njus, A.H. Saleh, K.H. Beningo, D. Njus, Hypochlorite covertedcysteinyl-dopamine into cytotoxic product a possible factor in parkinson disease free radic. Biol. Med. 101, 44–52 (2016). https://doi.org/10.1016/j.freeradbiomed.2016.09.023

    Article  CAS  Google Scholar 

  3. M.J. Steinbeck, L.J. Nesti, P.F. Sharkey, J. Parvizi, Myeloperoxidase and chlorinated peptides in osteoarthritis: potential biomarkers of the disease. J. Orthop. Res. 25, 1128–1135 (2007). https://doi.org/10.1002/jor.20400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. W.H.F. Sutherland, S.A. Jong, R.J. Walker, Hypochlorous acid and 3,4-dihydroxyphenylalanine increase the formation of serum protein lipofuscin-like fluorophores in vitro. Ren. Fail. 27, 239–246 (2005). https://doi.org/10.1081/JDI-49544

    Article  CAS  PubMed  Google Scholar 

  5. Y.W. Yap, M. Whiteman, B.H. Bay, Y. Li, F.S. Sheu, R.Z. Qi, C.H. Tan, N.S. Cheung, Hypochlorous acid induces apoptosis of cultured cortical neurons through activation of calpains and rupture of lysosomes. J. Neurochem. 98, 1597–1609 (2006). https://doi.org/10.1111/j.1471-4159.2006.03996.x

    Article  CAS  PubMed  Google Scholar 

  6. C.A. Hitchon, H.S.E. Gabalawy, Oxidation in rheumatoid arthritis. Arthritis. Res. Ther. 6, 265–278 (2004). https://doi.org/10.1186/ar1447

    Article  PubMed  PubMed Central  Google Scholar 

  7. J. Zhou, Q. Wang, Y. Ding, M.H. Zou, Hypochlorous acid via peroxynitrite activates protein kinase Cθ and insulin resistance in adipocytes. J. Mol. Endocrinol. 54, 25–37 (2015). https://doi.org/10.1530/JME-14-0213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. C.H. Sam, H.K. Lu, The role of hypochlorous acid as one of the reactive oxygen species in periodontal disease. J. Dent. Sci. 4, 45–54 (2009). https://doi.org/10.1016/S1991-7902(09)60008-8

    Article  Google Scholar 

  9. S. Hammerschmidt, N. Buchler, H. Wahn, Tissue lipid peroxidation and reduced glutathione depletion in hypochlorite-induced lung injury. Chest 121, 573–581 (2002). https://doi.org/10.1378/chest.121.2.573

    Article  CAS  PubMed  Google Scholar 

  10. Y. Lou, C. Wang, S. Chi, S. Li, Z. Mao, Z. Liu, Construction of a two-photon fluorescent probe for ratiometric imaging of hypochlorous acid in alcohol-induced liver injury. Chem. Commun. 55, 12912–12915 (2019). https://doi.org/10.1039/C9CC06888K

    Article  CAS  Google Scholar 

  11. A. Ulfig, L.I. Leichert, The effects of neutrophil-generated hypochlorous acid and other hypohalous acids on host and pathogens. Cell. Mol. Life Sci. 13, 1–30 (2020). https://doi.org/10.1007/s00018-020-03591-y

    Article  CAS  Google Scholar 

  12. M.S. Block, B.G. Rowan, Hypochlorous acids review. J. Oral Maxillofac. Surg. 78, 1461–1466 (2020). https://doi.org/10.1016/j.joms.2020.06.029

    Article  PubMed  PubMed Central  Google Scholar 

  13. Y. Hu, G. Xie, D.M. Stanbury, Oxidations at sulfur centers by aqueous hypochlorous acid and hypochlorite: Cl+ versus O atom transfer. Inorg. Chem. 56, 4047–4056 (2017). https://doi.org/10.1021/acs.inorgchem.6b03182

    Article  CAS  PubMed  Google Scholar 

  14. C.L. Hawkins, M.J. Davies, Hypochlorite-induced damage to DNA, RNA, and polynucleotides formation of chloramines and nitrogen-centered radicals. Chem. Res. Toxicol. 15, 83–92 (2002). https://doi.org/10.1021/tx015548d

    Article  CAS  PubMed  Google Scholar 

  15. O. Ordeig, R. Mas, J. Gonzalo, Continuous detection of hypochlorous acid/hypochlorite for water quality monitoring and control. Electroanalysis 17, 1641–1648 (2005). https://doi.org/10.1002/elan.200403194

    Article  CAS  Google Scholar 

  16. P. Soldatkin, D.V. Gorchkov, C. Martele, New enzyme potentiometric sensor for hypochlorite species detection sens. Actuators B 43, 99 (1997). https://doi.org/10.1016/S0925-4005(97)00144-5

    Article  CAS  Google Scholar 

  17. N.O. Soto, B. Horstkotte, J.G. March, P.L.L. Alba, L.L. Martinez, V.C. Martin, An environmental friendly method for the automatic determination of hypochlorite in commercial products using multisyringe flow injection analysis. Anal. Chim. Acta. 611, 182–186 (2008). https://doi.org/10.1016/j.aca.2008.01.073

    Article  CAS  PubMed  Google Scholar 

  18. J.B. Claver, M.C.V. Mirn, L.F.C. Vallvey, Determination of hypochlorite in water using a chemiluminescent test strip. Anal. Chim. Acta 522, 267–273 (2004). https://doi.org/10.1016/j.aca.2004.06.051

    Article  CAS  Google Scholar 

  19. X. Chen, X. Tian, I. Shin, J. Yoon, Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chem. Soc. Rev. 40, 4783–4804 (2011). https://doi.org/10.1039/C1CS15037E

    Article  CAS  PubMed  Google Scholar 

  20. T. Watanabe, T. Idehara, Y. Yoshimura, H. Nakazawa, Simultaneous determination of chlorinedioxide and hypochlorite in water by high-performance liquid chromatography. J. Chromatogr. A 796, 397–400 (1998). https://doi.org/10.2478/s11532-006-0054-9

    Article  CAS  Google Scholar 

  21. L. Nejdl, J. Sochor, O. Zitka, N. Cernei, B.R. Nedecky, P. Kopel, P. Babula, V. Adam, J. Hubalek, R. Kizek, Spectrometric and chromatographic study of reactive oxidants hypochlorousand and hypobromous acids and their interactions with taurine. Chromatographia 76, 363–373 (2013). https://doi.org/10.1007/s10337-012-2354-x

    Article  CAS  Google Scholar 

  22. K. Tian, P.K. Dasgupta, Simultaneous flow-injection measurement of hydroxide, chloride, hypochlorite and chlorate in chlor–alkali cell effluents. Talanta 52, 623–630 (2000). https://doi.org/10.1016/S0039-9140(00)00399-4

    Article  CAS  PubMed  Google Scholar 

  23. X. Chen, T. Pradhan, F. Wang, J.S. Kim, J. Yoon, Fluorescent chemosensors on spiroring-opening of xanthenes and related derivatives. Chem. Rev. 112, 1910–1956 (2012). https://doi.org/10.1021/cr200201z

    Article  CAS  PubMed  Google Scholar 

  24. R. Zhang, B. Song, J. Yuan, Bioanalytical methods for hypochlorous acid detection: recent advances and challenges. Trends Analyt. Chem. 99, 1–33 (2018). https://doi.org/10.1016/j.trac.2017.11.015

    Article  CAS  Google Scholar 

  25. M.F. Zhang, X. Liang, W. Zhang, Y.L. Wang, H. Wang, Y.H. Mohammed, B. Song, R. Zhang, J. Yuan, A unique iridium (III) complex-based chemosensor for multi-signal detection and multi-channel imaging of hypochlorous acid in liver injury. Biosens. Bioelectron. 87, 1005–1011 (2017). https://doi.org/10.1016/j.bios.2016.09.067

    Article  CAS  PubMed  Google Scholar 

  26. K. Ponnuvel, J. Ramamoorthy, G. Sivaraman, V. Padmini, Merocyanine dye-based fluorescent chemosensor for highly selective and sensitive detection of hypochlorous acid and imaging in live cells. ChemistrySelect 3(1), 91–95 (2018). https://doi.org/10.1002/slct.201701833

    Article  CAS  Google Scholar 

  27. W.J. Zhang, C. Guo, L.B. Liu, J.G. Qin, C.L. Yang, Naked-eye visible and fluorometric dual-signaling chemodosimeter for hypochlorous acid based on water-soluble p-methoxyphenol derivative. Org. Biomol. Chem. 9, 5560–5563 (2011). https://doi.org/10.1039/C1OB05550J

    Article  CAS  PubMed  Google Scholar 

  28. U. Haldara, R. Sharmaa, B. Ruidasb, H. Lee, Toward rapid and selective detection of hypochlorous acid in pure aqueous media and its application to cell imaging: BODIPY-derived water-soluble macromolecular chemosensor with high sensitivity. Dyes Pigments 172, 107858 (2020). https://doi.org/10.1016/j.dyepig.2019.107858

    Article  CAS  Google Scholar 

  29. H. Sun, H. Yu, H. Zhu, F. Ma, S. Zhang, D. Huang, S. Wang, Oxidative cleavage-based near-infrared fluorescent probe for hypochlorous acid detection and myeloperoxidase activity evaluation. Anal. Chem. 86, 671–677 (2014). https://doi.org/10.1021/ac403603r

    Article  CAS  PubMed  Google Scholar 

  30. Z. Zhang, Y. Zou, C. Deng, L. Meng, A simple rhodamine hydrazide-based turn-on fluorescent probe for HClO detection. Luminescence 31, 997–1004 (2016). https://doi.org/10.1002/bio.3064

    Article  CAS  PubMed  Google Scholar 

  31. J. Zhou, L. Li, W. Shi, X. Gao, X. Li, H. Ma, HClO can appear in the mitochondria of macrophages during bacterial infection as revealed by a sensitive mitochondrial-targeting fluorescent probe. Chem. Sci. 8, 4884–4888 (2015). https://doi.org/10.1039/C5SC01562F

    Article  CAS  Google Scholar 

  32. Q. Xu, L. Kyung-Ah, L. Songyi, M.L. Kyung, L. Won-Jae, Y. Juyoung, A highly specific fluorescent probe for hypochlorous acid and its application in imaging microbe-induced HClO production. J. Am. Chem. Soc. 26, 9944–9949 (2013). https://doi.org/10.1021/ja404649m

    Article  CAS  Google Scholar 

  33. Q. Xu, C.H. Heo, J.A. Kim, H.S. Lee, Y. Hu, D. Kim, M.K. Swamy, G. Kim, S.J. Nam, H.M. Kim, J. Yoon, A selective imidazoline-2-thione-bearing two-photon fluorescent probe for hypochlorous acid in mitochondria. Anal. Chem. 88, 6615–6620 (2016). https://doi.org/10.1002/bkcs.10926

    Article  CAS  PubMed  Google Scholar 

  34. W.C. Chen, V. Parthiban, W. Shu-Pao, A highly selective turn-on fluorescent probe for hypochlorous acid based on hypochlorous acid-induced oxidative intramolecular cyclization of boron dipyrromethene-hydrazone. Anal. Chim. Acta 882, 68–75 (2015). https://doi.org/10.1016/j.aca.2015.04.012

    Article  CAS  PubMed  Google Scholar 

  35. Y. Deng, F. Shumin, X. Qingfeng, G. Shengyi, F. Guoqiang, A novel reaction-based fluorescence probe for rapid imaging of HClO in live cells, animals, and injured liver tissues. Talanta 215, 120901 (2020). https://doi.org/10.1016/j.talanta.2020.12090

    Article  CAS  PubMed  Google Scholar 

  36. S.K. Yao, Q. Ying, A naphthalimide–rhodamine two-photon fluorescent turn-on probe for hypochlorous acid by desulfurization-cyclization and fluorescence resonance energy transfer. Sens. Actuators B Chem. 252, 877–885 (2017). https://doi.org/10.1039/c8an02196a

    Article  CAS  Google Scholar 

  37. Y. Shiraishi, Y. Chiharu, H. Takayuki, A coumarin–dihydroperimidine dye as a fluorescent chemosensor for hypochlorite in 99% water. RSC Adv. 49, 28636–28641 (2019). https://doi.org/10.1039/c9ra05533a

    Article  CAS  Google Scholar 

  38. H. Jia, X. Shuhe, F. Huan, M. Qingtao, D. Chengchen, Z. Zhiqiang, Z. Run, A fast response fluorescence probe specific for hypochlorous acid detection and its applications in bioimaging. Org. Biomol. Chem. 12, 2074–2082 (2018). https://doi.org/10.1002/asia.201500690

    Article  CAS  Google Scholar 

  39. P. Wei, Y. Wei, X. Fengfeng, Z. Wei, L. Ruohan, Z. Datong, Y. Tao, Deformylation reaction-based probe for in vivo imaging of HClO. Chem. Sci. 2, 495–501 (2018). https://doi.org/10.1039/c7sc03784h

    Article  CAS  Google Scholar 

  40. L. Shi, Y. Huijuan, Z. Xianqing, Y. Sheng, G. Shengzhao, X. Hua, Z. Kai, S. Guang, A novel ratiometric fluorescent probe based on thienocoumarin and its application for the selective detection of hypochlorite in real water samples and in vivo. New J. Chem. 16, 6232–6237 (2020). https://doi.org/10.1016/j.snb.2018.01.202

    Article  CAS  Google Scholar 

  41. F. Zhang, X. Li, Z. Wenzhu, W. Yong-Lei, W. Haolu, H.M. Yousuf, S. Bo, Z. Run, Y. Jingli, A unique iridium (III) complex-based chemosensor for multi-signal detection and multi-channel imaging of hypochlorous acid in liver injury. Biosens. Bioelectron. 87, 1005–1011 (2017). https://doi.org/10.1016/j.bios.2016

    Article  CAS  PubMed  Google Scholar 

  42. X. Chen, W. Xiaochun, W. Shujuan, S. Wen, W. Ke, M. Huimin, A highly selective and sensitive fluorescence probe for the hypochlorite anion. Chem. Eur. J. 15, 4719–4724 (2008). https://doi.org/10.1002/chem.200701677

    Article  CAS  Google Scholar 

  43. S. Bhaskar, S.S. Kumar, P.S. Kumar, K. Debaprasad, S. Nirmalendu, K. Snehadrinarayan, Highly selective detection of hypochlorous acid by a bis-heteroleptic Ru (II) complex of pyridyl-1, 2, 3-triazole ligand via C (sp2)–H hydroxylation. Inorg. Chem. 15, 9982–9991 (2019). https://doi.org/10.1021/acs.inorgchem.9b01125

    Article  CAS  Google Scholar 

  44. A.P. De Silva, S. Thomas, G.D. Moody, Fluorescent PET (Photoinduced Electron Transfer) sensors as potent analytical tools. Analyst 12, 2385–2393 (2009). https://doi.org/10.1039/B912527M

    Article  Google Scholar 

  45. S. Sarma, Y.J. Kim, M. Song, J.C. Ryu, Induction of apoptosis in human leukemia cells through the production of reactive oxygen species and activation of HMOX1 and Noxa by benzene, toluene, and o-xylene. Toxicology 280, 109–117 (2011). https://doi.org/10.1016/j.tox.2010.11.017

    Article  CAS  PubMed  Google Scholar 

  46. M.M. Ge, F. Hu, Z.Y. Lou, W. Xue, Xu.L. YuH, H.L. Wang, Role of Wnt/β-catenin signaling in the protective effect of epigallocatechin-3-gallate on lead-induced impairments of spine formation in the hippocampus of rats. RSC Adv. 5, 31622–31628 (2015). https://doi.org/10.1039/C5RA00315F

    Article  CAS  Google Scholar 

  47. N. Eller, B. Netterstrøm, P. Laursen, Risk of chronic effects on the central nervous system at low toluene exposure. Occup. Med. 49, 389–395 (1999). https://doi.org/10.1093/occmed/49.6.389

    Article  CAS  Google Scholar 

  48. B. Martin, M. Pearson, L. Kebejian, E. Golden, Nutrition and physiological function. Nat. Clin. Pract. Neurol. 3, 374–382 (2007). https://doi.org/10.1097/MCO.0b013e32831744ef

    Article  Google Scholar 

  49. X. Huang, X. Gu, G. Zhang, D. Zhang, A highly selective fluorescence turn-on detection of cyanide based on the aggregation of tetraphenylethylene molecules induced by chemical reaction. Chem. Commun. 48, 12195–12197 (2012). https://doi.org/10.1039/C2CC37094H

    Article  CAS  Google Scholar 

  50. G. Banuppriya, R. Sribalan, V. Padmini, V. Shanmugaiah, Biological evaluation and molecular docking studies of new curcuminoid derivatives: synthesis and characterization. Bioorg. Med. Chem. Lett. (2016). https://doi.org/10.1002/bio.3931

    Article  PubMed  Google Scholar 

  51. R.W. Boyle, I.R. Jonasson, The geochemistry of antimony and its use as an indicator element in geochemical prospecting. J. Geochem. Explor. 20, 223–302 (1984). https://doi.org/10.1016/0375-6742(84)90071-2

    Article  CAS  Google Scholar 

  52. P. Perucci, E. Monaci, A. Onofri, C. Vischetti, C. Casucci, Changes in physico-chemical and biochemical parameters of soil following addition of wood ash: a field experiment. Eur. J. Agron. 28, 155–161 (2008). https://doi.org/10.1016/j.eja.2007.06.005

    Article  CAS  Google Scholar 

  53. A.A. Melikian, K.G. Jordan, J. Braley, J. Rigotty, C.L. Meschter, S.S. Hecht, D. Hoffmann, Effects of catechol on the induction of tumors in mouse skin by 7, 8-dihydroxy-7, 8-dihydrobenzo [a] pyrenes. Carcinogenesis 10, 1897–1900 (1989). https://doi.org/10.1093/carcin/10.10.1897

    Article  CAS  PubMed  Google Scholar 

  54. X. Bao, X. Cao, Y. Yuan, B. Zhou, C. Huo, A water-soluble, highly sensitive and ultrafast fluorescence probe for imaging of mitochondrial hypochlorous acid. Sens. Actuators B Chem. (2021). https://doi.org/10.1016/j.snb.2021.130210

    Article  Google Scholar 

  55. G. Tugcu, M.D. Ertürk, M.T. Saçan, On the aquatic toxicity of substituted phenols to chlorella vulgaris: QSTR with an extended novel data set and interspecies models. J. Hazard. Mater. 339, 122–130 (2017). https://doi.org/10.1016/j.jhazmat.2017.06.027

    Article  CAS  PubMed  Google Scholar 

  56. T. Lai, W. Cai, H. Du, J. Ye, Fe3O4 microspheres and graphene oxide encapsulated with chitosan: a new platform for sensitive determination of hydroquinone and catechol. Electroanalysis 26, 216–222 (2014). https://doi.org/10.1002/elan.201300444

    Article  CAS  Google Scholar 

  57. V. Sethuraman, P. Muthuraja, M. Sethupathy, P. Manisankar, Development of biosensor for catechol using electrosynthesized poly (3-methylthiophene) and incorporation of LAC simultaneously. Electroanalysis 26, 1958–1965 (2014). https://doi.org/10.1002/elan.201400236

    Article  CAS  Google Scholar 

  58. Y. Li, S. Feng, Y. Zhong, Y. Li, S. Li, Simultaneous and highly sensitive determination of hydroquinone and catechol using carboxyl functionalized graphene self-assembled monolayers. Electroanalysis 27, 2221–2229 (2015). https://doi.org/10.1002/elan.201500114

    Article  CAS  Google Scholar 

  59. K.J. Rao, S. Paria, Aeglemarmelos leaf extract and plant surfactants mediated green synthesis of Au and Ag nanoparticles by optimizing process parameters using Taguchi method. ACS Sustain. Chem. Eng. 3, 483–491 (2015). https://doi.org/10.1021/acssuschemeng.5b00022

    Article  CAS  Google Scholar 

  60. K. Bavarsad, G.E. Barreto, A. Sahebkar, Protective effects of curcumin against ischemia-reperfusion injury in the nervous system. Mol. Neurobiol. 56, 1391–1404 (2019). https://doi.org/10.1007/s12035-018-1169-7

    Article  CAS  PubMed  Google Scholar 

  61. M.H. Teiten, F. Gaascht, M. Cronauer, E. Henry, M. Dicato, M. Diederich, Anti-proliferative potential of curcumin in androgen-dependent prostate cancer cells occurs through modulation of the wingless signaling pathway. Int. J. Oncol. 38, 603–611 (2011). https://doi.org/10.3892/ijo.2011.905

    Article  CAS  PubMed  Google Scholar 

  62. S.K. Patil, S.A. Patil, M.M. Vadiyar, D.V. Awale, A.S. Sartape, L.S. Walekar, S.S. Kolekar, Tailor-made dicationic ionic liquid as a fluorescent sensor for detection of hydroquinone and catechol. J. Mol. Liq. 244, 39–45 (2017). https://doi.org/10.1016/j.molliq.2017.08.119

    Article  CAS  Google Scholar 

  63. P. Bansal, G. Bhanjana, N. Prabhakar, J.S. Dhau, G.R. Chaudhary, Electrochemical sensor based on ZrO2 NPs/Au electrode sensing layer for monitoring hydrazine and catechol in real water samples. J. Mol. Liq. 248, 651–657 (2017). https://doi.org/10.1016/j.molliq.2017.10.098

    Article  CAS  Google Scholar 

  64. T.S.K. Naik, B.K. Swamy, Modification of carbon paste electrode by electrochemical polymerization of neutral red and its catalytic capability towards the simultaneous determination of catechol and hydroquinone: a voltammetric study. J. Electroanal. Chem. 804, 78–86 (2017). https://doi.org/10.1016/j.jelechem.2017.08.047

    Article  CAS  Google Scholar 

  65. D. Wu, A.C. Sedgwick, T. Gunnlaugsson, E.U. Akkaya, J. Yoon, T.D. James, Fluorescent chemosensors: the past, present and future. Chem. Soc. Rev. 46(23), 7105–7123 (2017). https://doi.org/10.1039/C7CS00240H

    Article  CAS  PubMed  Google Scholar 

  66. A. Kong, N.J. Cox, Allele-sharing models: LOD scores and accurate linkage tests. Am. J. Hum. Genet. 61, 1179–1188 (1997). https://doi.org/10.1086/301592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Y. Xie, C. Zhou, S. Zhang, L. Yan, X. Wu, Y. Shan, A coumarin-based fluorescent probe for the detection of hypochlorite ions and its applications in test paper and cell imaging. ChemistrySelect 5(29), 9240–9244 (2020). https://doi.org/10.1002/slct.202002258

    Article  CAS  Google Scholar 

  68. L. Liang, Y. Sun, C. Liu, X. Jiao, Y. Shang, X. Zeng, J. Zhao, Highly selective turn-on fluorescent probe for hypochlorite and viscosity detection. J. Mol. Struct. 1227, 129523 (2021). https://doi.org/10.1016/j.molstruc.2020.129523

    Article  CAS  Google Scholar 

  69. B. Zhu, X. Wu, J. Rodrigues, X. Hu, R. Sheng, G.M. Bao, A dual-analytes responsive fluorescent probe for discriminative detection of ClO− and N2H4 in living cells. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 246, 118953 (2021). https://doi.org/10.1016/j.saa.2020.118953

    Article  CAS  Google Scholar 

  70. M. Yang, S.C. Lee, M. Kim, M.H. Lim, C. Kim, A multi-functional picolinohydrazide-based chemosensor for colorimetric detection of iron and dual responsive detection of hypochlorite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 245, 118899 (2021). https://doi.org/10.1016/j.saa.2020.118899

    Article  CAS  Google Scholar 

  71. K. Ponnuvel, J. Ramamoorthy, G. Sivaraman, V. Padmini, Merocyanine dye-based fluorescent chemosensor for highly selective and sensitive detection of hypochlorous acid and imaging in live cells. ChemistrySelect 3, 91–95 (2018). https://doi.org/10.1002/slct.201701833

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank for financial support under DST-IRHPA, FIST, RUSA-MKU and PURSE for instrument facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vediappen Padmini.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1438 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramamoorthy, J., Sathya, V., Lavanya, R. et al. Highly selective and sensitive response of curcumin thioether derivative for the detection of hypochlorous acid by fluorimetric method. J IRAN CHEM SOC 19, 3327–3335 (2022). https://doi.org/10.1007/s13738-022-02528-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-022-02528-5

Keywords

Navigation