Skip to main content

Advertisement

Log in

Cyclic carbonates synthesis by cycloaddition reaction of CO2 with epoxides in the presence of zinc-containing and ionic liquid catalysts

  • Review
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The current production of organic cyclic carbonates involves the reaction of appropriate alcohols with toxic phosgene. But an alternative route for obtaining these valuable products is the cycloaddition reaction of CO2 with appropriative epoxides. The development of new catalytic systems for this reaction is a highly active field of research works. For this purpose, were developed many effective catalytic systems, such as organocatalysts, metal–organic frameworks, homogeneous metal-based catalysts, and ionic liquid catalysts. Among them, zinc-containing and ionic liquid catalysts are highly active systems, resulting in the increase in selectivity and the beneficial effect on the reaction rate under mild reaction conditions: reaction temperatures of below 100 °C at a low CO2 concentration and pressure at 0.1 MPa, if possible, without solvents and co-catalysts. This review article summarizes and discusses the results of research works over the last 10–15 years on the study of the homogeneous zinc-containing and ionic liquid catalysts for the cycloaddition reaction of CO2 with epoxides. We hope that it can be stimulated for further development in this area and will be useful for understanding the potential commercialization of these catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Fig. 2
Scheme 13
Scheme 14
Fig. 3
Scheme 15
Scheme 16
Scheme 17
Fig. 4
Scheme 18
Scheme 19
Fig. 5
Fig. 6
Fig. 7
Scheme 20
Scheme 21
Fig. 8
Scheme 22
Fig. 9
Scheme 23
Scheme 24
Fig. 10
Fig. 11
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Fig. 12
Scheme 29
Scheme 30
Scheme 31
Fig. 13
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Fig. 14
Scheme 38

Similar content being viewed by others

References

  1. M. Crippa, G. Oreggioni, D. Guizzardi, M. Muntean, E. Schaaf, V.E. Lo, E. Solazzo, F. Monforti-Ferrario, J.G.J. Olivier. E. Vignati, Fossil CO2 and GHG emissions of all world countries - 2019 Report. https://doi.org/10.2760/687800

  2. D.Y.C. Leung, G. Caramanna, M.M. Maroto-Valer, An overview of current status of carbon dioxide captures and storage technologies. Renew. Sustain. Energy Rev. 39, 426–443 (2014). https://doi.org/10.1016/j.rser.2014.07.093

    Article  CAS  Google Scholar 

  3. G. Kramm, R. Dlugi, Scrutinizing the atmospheric greenhouse effect and its climatic impact. Nat. Sci. 3, 971–998 (2011). https://doi.org/10.4236/ns.2011.312124

    Article  CAS  Google Scholar 

  4. Michele Aresta (Ed.) Carbon dioxide as chemical feedstock. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 370 p, (2010)

  5. A. Dibenedetto, A. Angelini, P. Stufano, Use of carbon dioxide as feedstock for chemicals and fuels: homogeneous and heterogeneous catalysis. J. Chem. Technol. Biotechnol. 89, 334–353 (2014). https://doi.org/10.1002/jctb.4229

    Article  CAS  Google Scholar 

  6. S. Dabral, T. Schaub, The use of carbon dioxide (CO2) as a building block in organic synthesis from an industrial perspective. Adv. Synth. Catal. 361(2), 223–246 (2018). https://doi.org/10.1002/adsc.201801215

    Article  CAS  Google Scholar 

  7. I. Omae, Aspects of carbon dioxide utilization. Catal. Today 115(1–4), 33–52 (2006). https://doi.org/10.1016/j.cattod.2006.02.024

    Article  CAS  Google Scholar 

  8. D.J. Darensbourg, Chemistry of carbon dioxide relevant to its utilization: a personal perspective. Inorg. Chem. 49(23), 10765–10780 (2010). https://doi.org/10.1021/ic101800d

    Article  CAS  PubMed  Google Scholar 

  9. C. Martín, G. Fiorani, A.W. Kleij, Recent advances in the catalytic preparation of cyclic organic carbonates. ACS Catal. 5, 1353–1370 (2015). https://doi.org/10.1021/cs5018997

    Article  CAS  Google Scholar 

  10. H. Buttner, L. Longwitz, J. Steinbauer, C. Wulf, T. Werner, Recent developments in the synthesis of cyclic carbonates from epoxides and CO2. Top. Curr. Chem. 375, 49–105 (2017). https://doi.org/10.1007/s41061-017-0136-5

    Article  CAS  Google Scholar 

  11. T. Sakakura, K. Kohno, The synthesis of organic carbonates from carbon dioxide. Chem. Commun. 11, 1312–1330 (2009). https://doi.org/10.1039/b819997c

    Article  CAS  Google Scholar 

  12. B. Schaffner, F. Schaffner, S.P. Verevkin, A. Borner, Organic carbonates as solvents in synthesis and catalysis. Chem. Rev. 110, 4554–4581 (2010). https://doi.org/10.1021/cr900393d

    Article  CAS  PubMed  Google Scholar 

  13. V. Besse, F. Camara, C. Voirin, R. Auvergne, S. Caillol, B. Boutevin, Synthesis and applications of unsaturated cyclocarbonates. Polym. Chem. 4, 4545–4561 (2013). https://doi.org/10.1039/c3py00343d

    Article  CAS  Google Scholar 

  14. R.H. Heyn, Organic carbonates, in Carbon dioxide utilisation: closing the carbon cycle. ed. by P. Styring, E.A. Quadrelli, K. Armstrong (Elsevier, 2014)

    Google Scholar 

  15. H. Zhang, H.-B. Liu, J.-M. Yue, Organic carbonates from natural sources. Chem. Rev. 114, 883–899 (2014). https://doi.org/10.1021/cr300430e

    Article  CAS  PubMed  Google Scholar 

  16. M. North, R. Pasquale, C. Young, Synthesis of cyclic carbonates from epoxides and CO2. Green Chem. 12, 1514–1539 (2010). https://doi.org/10.1039/c0gc00065e

    Article  CAS  Google Scholar 

  17. T. Sakakura, K. Kohno, The synthesis of organic carbonates from carbon dioxide. Chem. Commun. 45, 1312–1330 (2009). https://doi.org/10.1039/b819997c

    Article  CAS  Google Scholar 

  18. G. Fiorani, W.S. Guo, A.W. Kleij, Sustainable conversion of carbon dioxide: the advent of organocatalysis. Green Chem. 17, 1375–1389 (2015). https://doi.org/10.1039/c4gc01959h

    Article  CAS  Google Scholar 

  19. M. Cokoja, M.E. Wilhelm, M.H. Anthofer, W.A. Herrmann, F.E. Kuhn, Synthesis of cyclic carbonates from epoxides and carbon dioxide by using organocatalysts. Chem. Sus. Chem. 8, 2436–2454 (2015). https://doi.org/10.1002/cssc.201500161

    Article  CAS  Google Scholar 

  20. F.D. Bobbink, P.J. Dyson, Synthesis of carbonates and related compounds incorporating CO2 using ionic liquid-type catalysts: state-of-the-art and beyond. J. Catal. 343, 52–61 (2016). https://doi.org/10.1016/j.jcat.2016.02.033

    Article  CAS  Google Scholar 

  21. B.-H. Xu, J.-Q. Wang, J. Sun, Y. Huang, J.-P. Zhang, X.-P. Zhang, S.-J. Zhang, Fixation of CO2 into cyclic carbonates catalyzed by ionic liquids: a multi-scale approach. Green Chem. 17, 108–122 (2015). https://doi.org/10.1039/c4gc01754d

    Article  CAS  Google Scholar 

  22. W. Cheng, Q. Su, J. Wang, J. Sun, F.T.T. Ng, Ionic liquids: the synergistic catalytic effect in the synthesis of cyclic carbonates. Catalysts 3, 878–901 (2013). https://doi.org/10.3390/catal3040878

    Article  CAS  Google Scholar 

  23. J. Sun, S.-I. Fujita, M. Arai, Development in the green synthesis of cyclic carbonate from carbon dioxide using ionic liquids. J. Organomet. Chem. 690(15), 3490–3497 (2005). https://doi.org/10.1016/j.jorganchem.2005.02.011

    Article  CAS  Google Scholar 

  24. M.H. Beyzavi, C.J. Stephenson, Y. Liu, O. Karagiaridi, J.T. Hupp, O.K. Farha, Metal–organic framework-based catalysts: chemical fixation of CO2 with epoxides leading to cyclic organic carbonates. Front. Energy. Res. 2, 1–10 (2015). https://doi.org/10.3389/fenrg.2014.00063

    Article  Google Scholar 

  25. A.C. Kathalikkattil, R. Babu, J. Tharun, R. Roshan, D.-W. Park, Advancements in the conversion of carbon dioxide to cyclic carbonates using metal organic frameworks as catalysts. Catal. Surv. Asia 19, 223–235 (2015). https://doi.org/10.1007/s10563-015-9196-0

    Article  CAS  Google Scholar 

  26. A. Decortes, A.M. Castilla, A.W. Kleij, Salen-complex-mediated formation of cyclic carbonates by cycloaddition of CO2 to epoxides. Angew. Chem. Int. Ed. 49(51), 9822–9837 (2010). https://doi.org/10.1002/anie.201002087

    Article  CAS  Google Scholar 

  27. X. Wu, J. Castro-Osma, M. North, Synthesis of chiral cyclic carbonates via kinetic resolution of racemic epoxides and carbon dioxide. Symmetry 8(1), 4–10 (2016). https://doi.org/10.3390/sym8010004

    Article  CAS  Google Scholar 

  28. J.W. Comerford, I.D.V. Ingram, M. North, X. Wu, Sustainable metal-based catalysts for the synthesis of cyclic carbonates containing five-membered rings. Green Chem. 17(4), 1966–1987 (2015). https://doi.org/10.1039/c4gc01719f

    Article  CAS  Google Scholar 

  29. G. Laugel, C.C. Rocha, P. Massiani, T. Onfroy, F. Launay, Homogeneous and heterogeneous catalysis for the synthesis of cyclic and polymeric carbonates from CO2 and epoxides: a mechanistic overview. Adv. Chem. Lett. 1, 195–214 (2013). https://doi.org/10.1166/acl.2013.1036

    Article  CAS  Google Scholar 

  30. B.-H. Xu, J.-Q. Wang, J. Sun, Y. Huang, J.-P. Zhang, X.-P. Zhang, S.-J. Zhang, Fixation of CO2 into cyclic carbonates catalyzed by ionic liquids: a multi-scale approach. Green Chem. 17(1), 108–122 (2015). https://doi.org/10.1039/c4gc01754d

    Article  CAS  Google Scholar 

  31. S. Enthaler, X.-F. Wu (Eds.) Zinc catalysis: applications in organic synthesis. Wiley-VCH Verlag GmbH & Co. KGaA, 326 p (2015). https://doi.org/10.1002/9783527675944

  32. Z. Alaji, E. Safaei, A. Wojtczak, Development of pyridine based o-aminophenolate zinc complexes as structurally tunable catalysts for CO2 fixation into cyclic carbonates. New J. Chem. 41, 10121–10131 (2017). https://doi.org/10.1039/c7nj01656e

    Article  CAS  Google Scholar 

  33. C.-A. Laia, C.-C. Ariadna, C. Javier, R. Mar, M.M.-B. Anna, A. Ali, Highly active and selective Zn(II)-NN`O schiff base catalysts for the cycloaddition of CO2 to epoxides. J. CO2 Util. 14, 10–22 (2016). https://doi.org/10.1016/j.jcou.2016.01.002

    Article  CAS  Google Scholar 

  34. J.L.S. Milani, I.S. Oliveira, P.A. Dos Santos, A.K.S.M. Valdo, F.T. Martins, D. Cangussu, R.P. Das Chagas, Chemical fixation of carbon dioxide to cyclic carbonates catalyzed by zinc(II) complex bearing 1,2-disubstituted benzimidazole ligand. Chin. J. Catal. 39, 245–249 (2018). https://doi.org/10.1016/S1872-2067(17)62992-9

    Article  CAS  Google Scholar 

  35. S. Sonia, N. Marta, F.-B. Juan, F.S.-B. Luis, G. Andrés, L.-S. Agustín, A.C.-O. José, Efficient CO2 fixation into cyclic carbonates catalyzed by NN`O-scorpionate zinc complexes. Dalton Trans. 48, 10733–10742 (2019). https://doi.org/10.1039/c9dt01844a

    Article  CAS  Google Scholar 

  36. C.-G. Fernando, S. Giovanni, W.K. Arjan, B. Carleso, A DFT study on the mechanism of the cycloaddition reaction of CO2 to epoxides catalyzed by Zn(Salphen) complexes. Chem. Eur. J. 19, 6289–6298 (2013). https://doi.org/10.1002/chem.201203985

    Article  CAS  Google Scholar 

  37. C. Maeda, T. Taniguchi, K. Ogawa, T. Ema, Bifunctional catalysts based on m-phenylene-bridged porphyrin dimer and trimer platforms: synthesis of cyclic carbonates from carbon dioxide and epoxides. Angew. Chem. Int. Ed. 54(1), 134–138 (2014). https://doi.org/10.1002/anie.201409729

    Article  CAS  Google Scholar 

  38. B.H. Vignesh, K. Muralidharan, Zn(II), Cd(II) and Cu(II) complexes of 2,5-bis{N-(2,6-diisopropylphenyl)iminomethyl}pyrrole: synthesis, structures and their high catalytic activity for efficient cyclic carbonate synthesis. Dalton Trans. 42(4), 1238–1248 (2013). https://doi.org/10.1039/c2dt31755a

    Article  CAS  Google Scholar 

  39. E. Mercad, E. Zangrando, C. Claver, C. Godard, Robust zinc complexes that contain pyrrolidine-based ligands as recyclable catalysts for the synthesis of cyclic carbonates from carbon dioxide and epoxides. Chem. Cat. Chem. 8(1), 234–243 (2015). https://doi.org/10.1002/cctc.201500772

    Article  CAS  Google Scholar 

  40. C. Maeda, S. Sasaki, T. Ema, Electronic tuning of zinc porphyrin catalysts for the conversion of epoxides and CO2 into cyclic carbonates. Chem. Cat. Chem. 9(6), 946–949 (2017). https://doi.org/10.1002/cctc.201601690

    Article  CAS  Google Scholar 

  41. Q.-Y. Yuan, P. Zhang, Y.-L. Shi, D.-H. Liu, Dual-ligand complex catalysts for the cycloaddition of propylene oxide and carbon dioxide. J. Mol. Struct. 1150, 329–334 (2017). https://doi.org/10.1016/j.molstruc.2017.08.056

    Article  CAS  Google Scholar 

  42. J.G. Vitillo, V. Crocellà, F. Bonino, ZIF-8 as a catalyst in ethylene oxide and propylene oxide reaction with CO2 to cyclic organic carbonates. Chem. Eng. 3(3), 60–74 (2019). https://doi.org/10.3390/chemengineering3030060

    Article  CAS  Google Scholar 

  43. E.F. Nasirli, Alkylene carbonates synthesis by the reaction of carbon dioxide and ethylene oxide in the presence of zink phenolates. Int. J. Nano Chem. 5(3), 21–29 (2019). https://doi.org/10.18576/ijnc/050301

    Article  Google Scholar 

  44. E.F. Nasirli, M.J. Ibrahimova, MKh. Mamedov, F.A. Nasirov, Synthesis of ethylene carbonate by the cycloaddition reaction of ethylene oxide with carbon dioxide in the presence of highly efficient zinc-phenolate catalysts. Process. Petrochem. Oil Refin. 21(1), 14–21 (2020)

    CAS  Google Scholar 

  45. H. Kawanami, A. Sasaki, K. Matsui, Y. Ikushima, A rapid and effective synthesis of propylene carbonate using a supercritical CO2–ionic liquid system. Chem. Commun (2003). https://doi.org/10.1039/b212823c.

    Article  Google Scholar 

  46. S. Zhang, Y. Chen, F. Li, X. Lu, W. Dai, R. Mori, Fixation and conversion of CO2 using ionic liquids. Catal. Today. 115(1–4), 61–69 (2006). https://doi.org/10.1016/j.cattod.2006.02.021

    Article  CAS  Google Scholar 

  47. J.-I. Yu, H.-Y. Ju, K.-H. Kim, D.-W. Park, Cycloaddition of carbon dioxide to butyl glycidyl ether using imidazolium salt ionic liquid as a catalyst. Korean J. Chem. Eng. 27(2), 446–451 (2010). https://doi.org/10.1007/s11814-010-0074-1

    Article  CAS  Google Scholar 

  48. N.V. Rees, R.G. Compton, Electrochemical CO2 sequestration in ionic liquids; a perspective. Energy Environ. Sci. 4, 403–408 (2011). https://doi.org/10.1039/c0ee00580k

    Article  CAS  Google Scholar 

  49. T. Sakakura, K. Kohno, The synthesis of organic carbonates from carbon dioxide. Chem. Commun (2009). https://doi.org/10.1039/b819997c

    Article  Google Scholar 

  50. P.P. Pescarmona, M. Taherimehr, Challenges in the catalytic synthesis of cyclic and polymeric carbonates from epoxides and CO2. Catal. Sci. Technol. 2, 2169–2187 (2012). https://doi.org/10.1039/c2cy20365k

    Article  CAS  Google Scholar 

  51. J. Sun, S.-I. Dujita, M. Arai, Development in the green synthesis of cyclic carbonate from carbon dioxide using ionic liquids. J. Organomet. Chem. 690, 3490–3497 (2005). https://doi.org/10.1016/j.jorganchem.2005.02.011

    Article  CAS  Google Scholar 

  52. P. Goodrich, H.Q.N. Gunaratne, J. Jacquemin, L. Jin, Y. Lei, K.R. Seddon, Sustainable cyclic carbonate production, utilising carbon dioxide and azolate ionic liquids. ACS Sustain. Chem. Eng. 5(7), 5635–5641 (2017). https://doi.org/10.1021/acssuschemeng.7b00355

    Article  CAS  Google Scholar 

  53. M. Liu, L. Liang, X. Li, X. Gao, J. Sun, Novel urea derivative based ionic liquids with dual-functions: CO2 capture and conversion under metal- and solvent-free conditions. Green Chem. 18, 2851–2863 (2016). https://doi.org/10.1039/c5gc02605a

    Article  CAS  Google Scholar 

  54. M. Liu, P. Zhao, Y. Gu, R. Ping, J. Gao, F. Liu, Squaramide functionalized ionic liquids with well-designed structures: highly-active and recyclable catalyst platform for promoting cycloaddition of CO2 to epoxides. J. CO2 Util. 37, 39–44 (2020). https://doi.org/10.1016/j.jcou.2019.11.028

    Article  CAS  Google Scholar 

  55. F. Liu, Y. Gu, P. Zhao, H. Xin, J. Gao, M. Liu, N-hydroxysuccinimide based deep eutectic catalysts as a promising platform for conversion of CO2 into cyclic carbonates at ambient temperature. J. CO2 Util. 33, 419–426 (2019). https://doi.org/10.1016/j.jcou.2019.07.017

    Article  CAS  Google Scholar 

  56. S. Foltran, J. Alsarraf, F. Robert, Y. Landais, E. Cloutet, H. Cramail, T. Tassaing, On the chemical fixation of supercritical carbon dioxide with epoxides catalyzed by ionic salts: an in situ FTIR and Raman study. Catal. Sci. Technol. 3, 1046–1055 (2013). https://doi.org/10.1039/c2cy20784b

    Article  CAS  Google Scholar 

  57. J. Sun, J. Ren, S. Zhang, W. Cheng, Water as an efficient medium for the synthesis of cyclic carbonate. Tetrahedron Lett. 50, 423–426 (2009). https://doi.org/10.1016/j.tetlet.2008.11.034

    Article  CAS  Google Scholar 

  58. X. Fu, P. Xie, Y. Lian, L. He, W. Zhao, T. Chang, S. Qin, Temperature-responsive self-separation ionic liquid system of zwitterionic-type quaternary ammonium-KI for CO2 fixation. Chin. J. Catal. 39, 1854–1860 (2018). https://doi.org/10.1016/S1872-2067(18)63101-8

    Article  CAS  Google Scholar 

  59. M.O. Vieira, W.F. Monteiro, B.S. Neto, R. Ligabue, V.V. Chaban, S. Einloft, Surface active ionic liquids as catalyst for CO2 conversion to propylene carbonate. Catal. Lett. 148, 108–118 (2018). https://doi.org/10.1007/s10562-017-2212-4

    Article  CAS  Google Scholar 

  60. M.O. Vieira, W.F. Monteiro, B.S. Neto, V.V. Chaban, R. Ligabue, S. Einloft, Chemical fixation of CO2: the influence of linear amphiphilic anions on surface active ionic liquids (SAILs) as catalysts for synthesis of cyclic carbonates under solvent-free conditions. React. Kinet. Mech. Catal. 126, 987–1001 (2019). https://doi.org/10.1007/s11144-019-01544-6

    Article  CAS  Google Scholar 

  61. S. Wu, B. Wang, Y. Zhang, E.H.M. Elageed, H. Wu, G. Gao, Phenolic hydroxyl-functionalized imidazolium ionic liquids: highly efficient catalysts for the fixation of CO2 to cyclic carbonates. J. Mol. Catal. A Chem. 418–419, 1–8 (2016). https://doi.org/10.1016/j.molcata.2016.03.002

    Article  CAS  Google Scholar 

  62. W.-L. Dai, B. Jin, Sh.-L. Luo, X.-B. Luo, X.-M. Tu, Ch.-T. Au, Functionalized phosphonium-based ionic liquids as efficient catalysts for the synthesis of cyclic carbonate from expoxides and carbon dioxide. Appl. Catal. A General 470, 183–188 (2014). https://doi.org/10.1016/j.apcata.2013.10.060

    Article  CAS  Google Scholar 

  63. M.H. Anthofer, M.E. Wilhelm, M. Cokoja, M. Drees, W.A. Herrmann, F.E. Kühn, Hydroxy-functionalized imidazolium bromides as catalysts for the cycloaddition of CO2 and epoxides to cyclic carbonates. Chem. Cat. Chem. 7(1), 94–98 (2014). https://doi.org/10.1002/cctc.201402754

    Article  CAS  Google Scholar 

  64. Z.-Z. Yang, Y.-N. Zhao, L.-N. He, CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion. RSC Adv. 1(4), 545–567 (2011). https://doi.org/10.1039/c1ra00307k

    Article  CAS  Google Scholar 

  65. S. Yue, P. Wang, X. Hao, S. Zang, Dual amino-functionalized ionic liquids as efficient catalysts for carbonate synthesis from carbon dioxide and epoxide under solvent and cocatalyst-free conditions. J. CO2 Util. 21, 238–246 (2017). https://doi.org/10.1016/j.jcou.2017.07.017

    Article  CAS  Google Scholar 

  66. W. Zhang, L. He, B. Zhang, Y. Wang, J. Luo, Y. Zhao, C. Li, Preparation of propylene carbonate catalyzed by ionic liquid. Chem. Papers 74, 2583–2590 (2020). https://doi.org/10.1007/s11696-020-01053-0

    Article  CAS  Google Scholar 

  67. W. Li, W. Cheng, X. Yang, Q. Su, L. Dong, P. Zhang, Y. Yi, B. Li, S. Zhang, Synthesis of cyclic carbonate catalyzed by DBU derived basic ionic liquids. Chin. J. Chem. 36, 293–298 (2018). https://doi.org/10.1002/cjoc.201700747

    Article  CAS  Google Scholar 

  68. C. Chen, Y. Ma, D. Zheng, L. Wang, J. Li, J. Zhang, S. Zhang, Insight into the role of weak interaction played in the fixation of CO2 catalyzed by the amino-functionalized imidazolium-based ionic liquids. J. CO2 Util. 18, 156–163 (2017). https://doi.org/10.1016/j.jcou.2017.01.026

    Article  CAS  Google Scholar 

  69. V.B. Saptal, B.M. Bhanage, Bifunctional ionic liquids derived from biorenewable sources as sustainable catalysts for fixation of carbon dioxide. Chem. Sus. Chem. 10(6), 1145–1151 (2016). https://doi.org/10.1002/cssc.201601228

    Article  CAS  Google Scholar 

  70. L.V. Nguyen, B. Lee, D.Q. Nguyen, M.-J. Kang, H. Lee, S. Ryu, H.S. Kim, J.S. Lee, Lithium chloride-imidazolium chloride melts for the coupling reactions of propylene oxide and CO2. Bull. Korean Chem. Soc. 29(1), 148–152 (2008). https://doi.org/10.5012/bkcs.2008.29.1.148

    Article  CAS  Google Scholar 

  71. S. Zhang, S.J. Jin, Y.J. Kim, J. Hong, W. Lee, J.-B. Ryu, H.S. Kim, Highly active and non-corrosive catalytic systems for the coupling reactions of ethylene oxide and CO2. Bull. Korean Chem. Soc. 38(2), 219–223 (2017). https://doi.org/10.1002/bkcs.11068

    Article  CAS  Google Scholar 

  72. A.-L. Girard, N. Simon, M. Zanatta, S. Marmitt, P. Gonçalves, J. Dupont, Insights on recyclable catalytic system composed of task-specific ionic liquids for the chemical fixation of carbon dioxide. Green Chem. 16(5), 2815–2825 (2014). https://doi.org/10.1039/c4gc00127c

    Article  CAS  Google Scholar 

  73. T. Wang, D. Zheng, Y. Ma, J. Guo, Z. He, B. Ma, J. Zhang, Benzyl substituted imidazolium ionic liquids as efficient solvent-free catalysts for the cycloaddition of CO2 with epoxides: experimental and theoretic study. J. CO2 Util. 22, 44–52 (2017). https://doi.org/10.1016/j.jcou.2017.09.009

    Article  CAS  Google Scholar 

  74. D. Zheng, J. Zhang, X. Zhu, T. Ren, L. Wang, J. Zhang, Solvent effects on the coupling reaction of CO2 with PO catalyzed by hydroxyl imidazolium ionic liquid: comparison of different models. J. CO2 Util. 27, 99–106 (2018). https://doi.org/10.1016/j.jcou.2018.07.005

    Article  CAS  Google Scholar 

  75. J. Peng, S. Wang, H.-J. Yang, B. Ban, Z. Wei, L. Wang, B. Lei, Highly efficient fixation of carbon dioxide to cyclic carbonates with new multi-hydroxyl bis-(quaternary ammonium) ionic liquids as metal-free catalysts under mild conditions. Fuel 224, 481–488 (2018). https://doi.org/10.1016/j.fuel.2018.03.119

    Article  CAS  Google Scholar 

  76. L. Ji, Z. Luo, Y. Zhang, R. Wang, Y. Ji, F. Xia, G. Gao, Imidazolium ionic liquids/organic bases: Efficient intermolecular synergistic catalysts for the cycloaddition of CO2 and epoxides under atmospheric pressure. Mol. Catal. 446, 124–130 (2018). https://doi.org/10.1016/j.mcat.2017.12.026

    Article  CAS  Google Scholar 

  77. Y. Wang, J. Nie, C. Lu, F. Wang, C. Ma, Z. Chen, G. Yang, Imidazolium-based polymeric ionic liquids for heterogeneous catalytic conversion of CO2 into cyclic carbonates. Microporous Mesoporous Mater. 292(109751), 1–6 (2020). https://doi.org/10.1016/j.micromeso.2019.109751

    Article  CAS  Google Scholar 

  78. X. Wang, Y. Zhou, Z. Guo, G. Chen, J. Li, Y. Shi, Y. Liu, J. Wang, Heterogeneous conversion of CO2 into cyclic carbonates at ambient pressure catalyzed by ionothermal–derived mesomacroporous hierarchical poly(ionic liquid)s. Chem. Sci. 6, 6916–6924 (2015). https://doi.org/10.1039/c5sc02050f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. R. Qu, Z. Ren, N. Li, F. Zhang, Z.J. Zhang, H. Zhang, Solvent-Free cycloaddition of carbon dioxide and epichlorohydrin catalyzed by surface-attached imidazolium-type poly(ionic liquid) monolayers. J. CO2 Util. 38, 168–176 (2020). https://doi.org/10.1016/j.jcou.2020.01.022

    Article  CAS  Google Scholar 

  80. D. Brühwiler, Postsynthetic functionalization of mesoporous silica. Nanoscale 2, 887–892 (2010). https://doi.org/10.1039/c0nr00039f

    Article  PubMed  Google Scholar 

  81. C. Kohrt, T. Werner, Recyclable bifunctional polystyrene and silica gel-supported organocatalyst for the coupling of CO2 with epoxides. Chem. Sus. Chem. 8, 2031–2034 (2015). https://doi.org/10.1002/cssc.201500128

    Article  CAS  Google Scholar 

  82. A.R. Hajipour, Y. Heidari, G. Kozehgary, Silica grafted ammonium salts based on DABCO as heterogeneous catalysts for cyclic carbonate synthesis from carbon dioxide and epoxides. RSC Adv. 5, 22373–22379 (2015). https://doi.org/10.1039/c4ra16083e

    Article  CAS  Google Scholar 

  83. M.V. Zakharova, F. Kleitz, F.-G. Fontaine, Carbon dioxide oversolubility in nanoconfined liquids for the synthesis of cyclic carbonates. Chem. Cat. Chem. 9, 1886–1890 (2017). https://doi.org/10.1002/cctc.201700247

    Article  CAS  Google Scholar 

  84. J.M. Kolle, A. Sayari, Substrate dependence on the fixation of CO2 to cyclic carbonates over reusable porous hybrid solids. J CO2 Util. 26, 564–574 (2018). https://doi.org/10.1016/j.jcou.2018.06.013

    Article  CAS  Google Scholar 

  85. M. Liu, B. Liu, L. Liang, F. Wang, L. Shi, J. Sun, Design of bifunctional NH3I-Zn/SBA-15 single-component heterogeneous catalyst for chemical fixation of carbon dioxide to cyclic carbonates. J. Mol. Catal. A Chem. 418–419, 78–85 (2016). https://doi.org/10.1016/j.molcata.2016.03.037

    Article  CAS  Google Scholar 

  86. M. Liu, X. Lu, Y. Jiang, J. Sun, M. Arai, Zwitterionic imidazole-urea derivative framework bridged mesoporous hybrid silica: a highly efficient heterogeneous nanocatalyst for carbon dioxide conversion. Chem. Cat. Chem. 10, 1860–1868 (2018). https://doi.org/10.1002/cctc.201701492

    Article  CAS  Google Scholar 

  87. A. Comès, X. Collard, L. Fusaro, L. Atzori, M.G. Cutrufello, C. Aprile, Bi-functional heterogeneous catalysts for carbon dioxide conversion: Enhanced performances at low temperature. RSC Adv. 8, 25342–25350 (2018). https://doi.org/10.1039/c8ra03878c

    Article  CAS  Google Scholar 

  88. P. Agrigento, S.M. Al-Amsyar, B. Sorée, M. Taherimehr, M. Gruttadauria, C. Aprile, P.P. Pescarmona, Synthesis and high-throughput testing of multilayered supported ionic liquid catalysts for the conversion of CO2 and epoxides into cyclic carbonates. Catal. Sci. Technol. 4, 1598–1607 (2014). https://doi.org/10.1039/c3cy01000g

    Article  CAS  Google Scholar 

  89. C. Calabrese, L.F. Liotta, F. Giacalone, M. Gruttadauria, C. Aprile, Supported polyhedral oligomeric silsesquioxane-based (POSS) materials as highly active organocatalysts for the conversion of CO2. Chem. Cat. Chem. 11, 560–567 (2019). https://doi.org/10.1002/cctc.201801351

    Article  CAS  Google Scholar 

  90. J.H. Lee, A.S. Lee, J.-C. Lee, S.M. Hong, S.S. Hwang, C.M. Koo, Multifunctional mesoporous ionic gels and scaffolds derived from polyhedral oligomeric silsesquioxanes. ACS Appl. Mater. Interfaces 9, 3616–3623 (2017). https://doi.org/10.1021/acsami.6b12340

    Article  CAS  PubMed  Google Scholar 

  91. Q. Su, Y. Qi, X. Yao, W. Cheng, L. Dong, S. Chen, S. Zhang, Ionic liquids tailored and confined by one-step assembly with mesoporous silica for boosting the catalytic conversion of CO2 into cyclic carbonates. Green Chem. 20, 3232–3241 (2018). https://doi.org/10.1039/c8gc01038b

    Article  CAS  Google Scholar 

  92. T. Takahashi, T. Watahiki, S. Kitazume, H. Yasuda, T. Sakakura, Synergistic hybrid catalyst for cyclic carbonate synthesis: remarkable acceleration caused by immobilization of homogeneous catalyst on silica. Chem. Commun. (2006). https://doi.org/10.1039/b517140g

    Article  Google Scholar 

  93. T. Sakai, Y. Tsutsumi, T. Ema, Highly active and robust organic–inorganic hybrid catalyst for the synthesis of cyclic carbonates from carbon dioxide and epoxides. Green Chem. 10, 337–341 (2008). https://doi.org/10.1039/b718321f

    Article  CAS  Google Scholar 

  94. K. Motokura, S. Itagaki, Y. Iwasawa, A. Miyaji, T. Baba, Silica-supported aminopyridinium halides for catalytic transformations of epoxides to cyclic carbonates under atmospheric pressure of carbon dioxide. Green Chem. 11, 1876–1880 (2009). https://doi.org/10.1039/b916764c

    Article  CAS  Google Scholar 

  95. R. Luo, X. Zhou, W. Zhang, Z. Liang, J. Jiang, H. Ji, New bi-functional zinc catalysts based on robust and easy-to-handle N-chelating ligands for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions. Green Chem. 16, 4179–4189 (2014). https://doi.org/10.1039/c4gc00671b

    Article  CAS  Google Scholar 

  96. Y. Chen, R. Luo, Q. Xu, J. Jiang, X. Zhou, H. Ji, Metalloporphyrin polymers with intercalated ionic liquids for synergistic CO2 fixation via cyclic carbonate production. ACS Sustain. Chem. Eng. 6(1), 1074–1082 (2017). https://doi.org/10.1021/acssuschemeng.7b03371

    Article  CAS  Google Scholar 

  97. K. Jasiak, A. Siewniak, K. Kopczynska, A. Chrobok, S. Baj, Hydrogensulphate ionic liquids as an efficient catalyst for the synthesis of cyclic carbonates from carbon dioxide and epoxides. J. Chem. Technol. Biotechnol. 91, 2827–2833 (2016). https://doi.org/10.1002/jctb.4892

    Article  CAS  Google Scholar 

  98. D. Kim, Y. Moon, D. Ji, H. Kim, D. Cho, Metal-containing ionic liquids as synergistic catalysts for the cycloaddition of CO2: a density functional theory and response surface methodology corroborated study. Sustain. Chem. Eng. 4(9), 4591–4600 (2016). https://doi.org/10.1021/acssuschemeng.6b00711

    Article  CAS  Google Scholar 

  99. R. Ma, L.-N. He, Y.-B. Zhou, Efficient and recyclable tetraoxo-coordinated zinc catalyst for the cycloaddition of epoxides with carbon dioxide at atmospheric pressure. Green Chem. 18, 226–231 (2016). https://doi.org/10.1039/c5gc01826a

    Article  Google Scholar 

  100. W. Wang, C. Li, L. Yan, Y. Wang, M. Jiang, Y. Ding, Ionic liquid/Zn-PPh3 integrated porous organic polymers featuring multifunctional sites: highly active heterogeneous catalyst for cooperative conversion of CO2 to cyclic carbonates. Catalysis 6, 6091–6100 (2016). https://doi.org/10.1021/acscatal.6b01142

    Article  CAS  Google Scholar 

  101. Y. Xie, J. Liang, Y. Fu, J. Lin, H. Wang, S. Tu, J. Li, Poly(ionic liquid)s with high density of nucleophile/electrophile for CO2 fixation to cyclic carbonates at mild conditions. J. CO2 Util. 32, 281–289 (2019). https://doi.org/10.1016/j.jcou.2019.04.023

    Article  CAS  Google Scholar 

  102. J. Chen, M. Zhong, L. Tao, L. Liu, S. Jayakumar, C. Li, Q. Yang, The cooperation of porphyrin-based porous polymer and thermal-responsive ionic liquid for efficient CO2 cycloaddition reaction. Green Chem. 20(4), 903–911 (2018). https://doi.org/10.1039/c7gc03801a

    Article  CAS  Google Scholar 

  103. P. Li, Z. Cao, Catalytic coupling of CO2 with epoxide by metal macrocycles functionalized with the imidazolium bromide: insight into mechanism and activity regulation from density functional calculations. Dalton Trans. 48(4), 1344–1350 (2019). https://doi.org/10.1039/c8dt04684k

    Article  CAS  PubMed  Google Scholar 

  104. F. Wang, C. Xu, Z. Li, C. Xia, J. Chen, Mechanism and origins of enantioselectivity for [BMIM]Cl ionic liquids and ZnCl2 co-catalyzed coupling reaction of CO2 with epoxides. J. Mol. Catal. A: Chem. 385, 133–140 (2014). https://doi.org/10.1016/j.molcata.2014.01.024

    Article  CAS  Google Scholar 

  105. J. Li, D. Jia, Z. Guo, Y. Liu, Y. Lyu, Y. Zhou, J. Wang, Imidazolinium based porous hypercrosslinked ionic polymers for efficient CO2 capture and fixation with epoxides. Green Chem. 19(11), 2675–2686 (2017). https://doi.org/10.1039/c7gc00105c

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuzuli Nasirov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasirov, F., Nasirli, E. & Ibrahimova, M. Cyclic carbonates synthesis by cycloaddition reaction of CO2 with epoxides in the presence of zinc-containing and ionic liquid catalysts. J IRAN CHEM SOC 19, 353–379 (2022). https://doi.org/10.1007/s13738-021-02330-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02330-9

Keywords

Navigation