Skip to main content
Log in

Effect of different acceptors on N-hexyl carbazole moiety for dye-sensitized solar cells: design, characterization, molecular structure, and DSSC fabrications

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Hexyl carbazole derivatives are one of the most prominent dye scaffolds in the dye-sensitized solar cells (DSSCs). New substituted carbazole dyes such as DRA-HC, DCA-HC, and DTC-HC were synthesized for DSSCs. These dyes are containing hexyl moiety as electron donor and rhodanine-3-acetic acid, cyanoacetic acid and tetracyanoethylene as an electron acceptor linked to carbazole moiety. The relation between dye structures, photophysical/electrochemical, molecular structure and DSSC manufacturing had been discussed. All structures showed more positive ground-state oxidation potential than I/I3 and more negative excited state oxidation potential than the conduction band edge of the semiconductor. The highest efficiency of the DSSCs was obtained in the case of DCA-HC dye (η = 1.41%, VOC = 708 mV, FF = 0.81, and JSC = 2.45 mA cm−2 with 100 mW cm−2) compared to other synthesized dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

DRA-HC:

2,2′-(((9-Hexyl-9H-carbazole-3,6-diyl)bis(methanylylidene))bis(4-oxo-2-thioxothiazolidin-3-yl-5-ylidene))diacetic acid

DCA-HC:

3-(6-(2-Carboxy-2-cyanovinyl)-9-hexyl-9H-carbazol-3-yl)-2-cyanoacrylic acid

DTC-HC:

2,2′-((((9-Hexyl-9H-carbazole-3,6-diyl)bis(methanylylidene))bis(hydrazin-1-yl-2-ylidene))bis(4,1-phenylene))bis(ethene-1,1,2-tricarbonitrile)

DSSCs:

Dye-sensitized solar cells

V OC :

Open-circuit voltage

J SC :

Short-circuit current density

D–π–A:

Donor–(π-conjugated spacer)–acceptor

TCNE:

Tetracyanoethylene

TLC:

Thin-layer chromatography

KBr:

Potassium bromide

SEM:

Scanning electron microscopy

CV:

Cyclic voltammetry techniques

TBP:

4-Tertbutylpyridine

ε :

Molar absorptivity

E 0–0 :

Band gap

E LUMO :

Lowest unoccupied molecular orbital

τe:

Electron lifetime

IP:

Ionization potential

η :

Absolute hardness

ω :

Electrophilicity index

ΔE :

Separation energy

S :

Global softness

η :

Power conversion efficiency

FF:

Fill factor

TiO2 :

Titanium dioxide

ICT:

Intermolecular charge transfer

TBAI:

Tetra-n-butylammonium iodide

DMSO-d6 :

Deuterated dimethyl sulfoxide

UV–Vis:

Ultraviolet–visible

EIS:

Electrochemical impedance spectroscopy

FTO:

Fluorine-doped tin oxide

DMF:

Dimethyl formamide

E ox :

Redox potentials

E HOMO :

Highest occupied molecular orbital

JV :

Current–voltage density

TMS:

Tetra-methyl silane

σ :

Absolute softness

EA:

Electron affinity

ΔN max :

Maximum amount of electron transfer

χ :

Absolute electronegativity

References

  1. K. Ranabhat, L. Patrikeev, A. A. Evna Revina, K. Andrianov, V. Lapshinsky, and E. Sofronova, J. Appl. Eng. Sci. 14, 481 (2016).

    Google Scholar 

  2. A. Blakers, N. Zin, K.R. McIntosh, K. Fong, Energy Procedia 33, 1 (2013)

    Google Scholar 

  3. P.A. Troshin, R.N. Lyubovskaya, V.F. Razumov, Nanotechnol. Russ. 3, 242 (2008)

    Google Scholar 

  4. Z. Fan, J. Xiao, K. Sun, L. Chen, Y. Hu, J. Ouyang, K.P. Ong, K. Zeng, J. Wang, J. Phys. Chem. Lett. 6, 1155 (2015)

    CAS  PubMed  Google Scholar 

  5. K.R. Catchpole, A. Polman, Opt. Express 16, 21793 (2008)

    CAS  PubMed  Google Scholar 

  6. T. Sogabe, Q. Shen, K. Yamaguchi, J. Photonics Energy 6, 040901 (2016)

    Google Scholar 

  7. A.N.B. Zulkifili, T. Kento, M. Daiki, A. Fujiki, J. Clean Energy Technol. 3, 382 (2015)

    Google Scholar 

  8. C. Satheeshkumar, M. Ravivarma, P. Rajakumar, R. Ashokkumar, D.C. Jeong, C. Song, Tetrahedron Lett. 56, 321 (2015)

    CAS  Google Scholar 

  9. L. Giribabu, V.K. Singh, M. Srinivasu, C.V. Kumar, V.G. Reddy, Y. Soujnya, P.Y. Reddy, J. Chem. Sci. 123, 371 (2011)

    CAS  Google Scholar 

  10. M.K. Nazeeruddin, E. Baranoff, M. Grätzel, Sol. Energy 85, 1172 (2011)

    CAS  Google Scholar 

  11. W. Wu, J. Wang, Z. Zheng, Y. Hu, J. Jin, Q. Zhang, J. Hua, Sci. Rep. 5, 8592 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. S. Bykkam, B. Kalagadda, V.R. Kalagadda, M. Ahmadipour, C.S. Chakra, V. Rajendar, J. Electron. Mater. 47, 620 (2018)

    CAS  Google Scholar 

  13. K. Sharma, V. Sharma, and S. S. Sharma, Nanoscale Res. Lett. 13, 381 (2018).

    PubMed  PubMed Central  Google Scholar 

  14. C.Y. Chen, M. Wang, J.Y. Li, N. Pootrakulchote, L. Alibabaei, C.H. Ngoc-Le, J.D. Decoppet, J.H. Tsai, C. Grätzel, C.G. Wu, S.M. Zakeeruddin, M. Grätzel, ACS Nano 3, 3103 (2009)

    CAS  PubMed  Google Scholar 

  15. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Nat. Chem. 6, 242 (2014)

    CAS  PubMed  Google Scholar 

  16. L.Q. Bao, P. Ho, R.K. Chitumalla, J. Jang, S. Thogiti, J.H. Kim, Dyes Pigments 149, 25 (2018)

    CAS  Google Scholar 

  17. V. Venkatraman, S. Abburu, B.K. Alsberg, Phys. Chem. Chem. Phys. 17, 27672 (2015)

    CAS  PubMed  Google Scholar 

  18. Y. Hua, L.T.L. Lee, C. Zhang, J. Zhao, T. Chen, W.Y. Wong, W.K. Wong, X. Zhu, J. Mater. Chem. A 3, 13848 (2015)

    CAS  Google Scholar 

  19. T. Horiuchi, H. Miura, K. Sumioka, S. Uchida, J. Am. Chem. Soc. 126, 12218 (2004)

    CAS  PubMed  Google Scholar 

  20. M. Liang, J. Chen, Chem. Soc. Rev. 42, 3453 (2013)

    CAS  PubMed  Google Scholar 

  21. S.H. Kim, C. Sakong, J.B. Chang, B. Kim, M.J. Ko, D.H. Kim, K.S. Hong, J.P. Kim, Dyes Pigments 97, 262 (2013)

    CAS  Google Scholar 

  22. A.S. Beni, M. Zarandi, B. Hosseinzadeh, A.N. Chermahini, J. Mol. Struct. 1164, 155 (2018)

    Google Scholar 

  23. J. Ostrauskaite, V. Voska, J. Antulis, V. Gaidelis, V. Jankauskas, J.V. Grazulevicius, J. Mater. Chem. 12, 3469 (2002)

    CAS  Google Scholar 

  24. A.B. Kashyout, M. Soliman, M. Fathy, Renew. Energy 35, 2914 (2010)

    CAS  Google Scholar 

  25. D. Kuang, S. Ito, B. Wenger, C. Klein, J.E. Moser, R. Humphry-Baker, S.M. Zakeeruddin, M. Grätzel, J. Am. Chem. Soc. 128, 4146 (2006)

    CAS  PubMed  Google Scholar 

  26. A. Kessi, B. Delley, Int. J. Quantum Chem. 68, 135 (1998)

    CAS  Google Scholar 

  27. P.S. Institut, C.-V. Psi, Int. J. 69, 423 (1998)

    Google Scholar 

  28. B. Delley, J. Chem. Phys. 113, 7756 (2000)

    CAS  Google Scholar 

  29. Z. Zhang, X. Liu, B.I. Yakobson, W. Guo, J. Am. Chem. Soc. 134, 19326 (2012)

    CAS  PubMed  Google Scholar 

  30. B. Hammer, L.B. Hansen, J.K. Nørskov, Phys. Rev. B Conden. Matter Mater. Phys. 59, 7413 (1999)

    Google Scholar 

  31. T.Y. Wu, M.H. Tsao, S.G. Su, H.P. Wang, Y.C. Lin, F.L. Chen, C.W. Chang, I.W. Sun, J. Braz. Chem. Soc. 22, 780 (2011)

    CAS  Google Scholar 

  32. S.A. Kim, H.J. Jo, M.R. Jung, Y.C. Choi, D.K. Lee, M. Lee, J.H. Kim, Mol. Cryst. Liq. Cryst. 551, 283 (2011)

    CAS  Google Scholar 

  33. M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc. 115, 6382 (1993)

    CAS  Google Scholar 

  34. P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev. 103, 1793 (2003)

    CAS  PubMed  Google Scholar 

  35. R. G. Parr and R. G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983)

    CAS  Google Scholar 

  36. I. Fernández, E. Martínez-Viviente, P.S. Pregosin, Inorg. Chem. 43, 4555 (2004)

    PubMed  Google Scholar 

  37. A.A. Soliman, M.A. Amin, A.A. El-Sherif, S. Ozdemir, C. Varlikli, C. Zafer, Dyes Pigments 99, 1056 (2013)

    CAS  Google Scholar 

  38. J.I. Aihara, J. Phys. Chem. A 103, 7487 (1999)

    CAS  Google Scholar 

  39. R.G. Pearson, Coord. Chem. Rev. 100, 403 (1990)

    CAS  Google Scholar 

  40. M. Aljahdali, A.A. El-sherif, Inorg. Chim. Acta 407, 58 (2013)

    CAS  Google Scholar 

  41. M.H. Helal, M.A. Salem, M.A. Gouda, N.S. Ahmed, A.A. El-Sherif, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 147, 73 (2015)

    CAS  Google Scholar 

  42. G. Zhu, L. Pan, J. Yang, X. Liu, H. Sun, Z. Sun, J. Mater. Chem. 22, 24326 (2012)

    CAS  Google Scholar 

  43. F.E.T. Heakal, A.M. Fekry, M.Z. Fatayerji, J. Appl. Electrochem. 39, 1633 (2009)

    CAS  Google Scholar 

  44. F. El-Taib Heakal, O.S. Shehata, N.S. Tantawy, A.M. Fekry, Int. J. Hydrog. Energy 37, 84 (2012)

    CAS  Google Scholar 

  45. F. El-Taib Heakal, M.M. Hefny, A.M. Abd El-Tawab, Int. J. Electrochem. Sci. 8, 4610 (2013)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. El-Sherif.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOC 2724 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abusaif, M.S., Abu-Saied, M.A., Fathy, M. et al. Effect of different acceptors on N-hexyl carbazole moiety for dye-sensitized solar cells: design, characterization, molecular structure, and DSSC fabrications. J IRAN CHEM SOC 18, 949–960 (2021). https://doi.org/10.1007/s13738-020-02082-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-020-02082-y

Keywords

Navigation