Skip to main content
Log in

Preparation and characterization of SrO/MgO nanocomposite as a novel and efficient base catalyst for biodiesel production from waste cooking oil: a statistical approach for optimization

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The purpose of this study was to develop and optimize the liquid-phase transesterification reaction of waste cooking oil with methanol over a solid base catalyst using a 3-level 4-factor Box–Behnken statistical design (BBD). New and efficient solid base SrO/MgO catalysts with different molar ratios of Sr to Mg were synthesized by the co-precipitation method followed by calcinations at 850 °C for 5 h. Techniques such as AAS, Hammett indicator procedure, CO2-TPD, SEM, FT-IR, BET and XRD were used for characterization of the catalysts. The results of the Hammett indicator procedure and CO2-TPD analysis confirm the generation of superbasicity on the surface of SrO/MgO catalyst. The SrO/MgO (3:7) catalyst has higher activity in comparison with the other samples. The effects of four process-based factors including catalyst amount, temperature, methanol/oil molar ratio and reaction time on the yield of biodiesel were studied. Analysis of variance was applied to study the impacts of the main factors and their interactions. The optimized conditions (catalyst amount 0.1 g, ME/oil molar ratio 7.77, temperature 50.16 °C and reaction time 1.37 h) predicted by BBD were in great accord with the experimental results and obtained 87.49% biodiesel yield. The effect of catalyst recycling and reusability potential of synthesized catalyst samples were studied. The stability and reusability of catalysts prepared by co-precipitation method were much more than those of catalysts prepared by impregnation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

AAS:

Atomic absorption spectroscopy

Adj R-squared:

Adjusted R-squared

ANOVA:

Analysis of variance

ASTM:

American Society for Testing and Materials

BBD:

Box–Behnken statistical design

BET:

Brunauer–Emmett–Teller

CCD:

Central composite design

CO2 TPD:

Carbon dioxide temperature programmed desorption

FAME:

Fatty acid methyl esters

FFA:

Free fatty acids

FID:

Flame ionization detector

FT-IR:

Fourier transform infrared

GC–MS:

Gas chromatography mass spectrometry

IM:

Impregnation method

ME:

Methanol

RSM:

Response surface methodology

RSREG:

Response surface regression

Pred R-squared:

Predicted R-squared

SEM:

Scanning electron microscopy

S/N:

Signal-to-noise ratio

TCD:

Thermal conductivity detector

3-D surface:

Three-dimensional response surfaces

WCO:

Waste cooking oil

WCPO:

Waste cooking palm oil

wt%:

Weight percent

XRD:

X-ray diffraction

Y:

Yield

References

  1. I. Reyero, G. Arzamendi, S. Zabala, L.M. Gandía, Fuel Process. Technol. 129, 147 (2015)

    Article  CAS  Google Scholar 

  2. A. Islam, Y.H. Taufiq-Yap, E.S. Chan, M. Moniruzzaman, S. Islam, M.N. Nabi, Energy Convers. Manag. 88, 1200 (2014)

    Article  CAS  Google Scholar 

  3. J.Y. Dai, D.Y. Li, Y.C. Zhao, Z.L. Xiu, Ind. Eng. Chem. Res. 53, 9325 (2014)

    Article  CAS  Google Scholar 

  4. A.A. Ceron, R.N.V. Boas, F.C. Biaggio, H.F. de Castro, Biomass Bioenergy 119, 166 (2018)

    Article  CAS  Google Scholar 

  5. S.A.A. Kumar, G. Sakthinathan, R. Vignesh, J.R. Banu, H. Ala’a, Fuel 253, 921 (2019)

    Article  CAS  Google Scholar 

  6. M.A.M. Farid, M.A. Hassan, Y.H. Taufiq-Yap, Y. Shirai, M.Y. Hasan, M.F. Zakaria, J. Clean. Prod. 165, 262 (2017)

    Article  CAS  Google Scholar 

  7. E.H.S. Moecke, R. Feller, H.A. Santos, M.M. Machado, A.L.V. Cubas, A.R.A. Dutra, L.L.V. Santos, S.R. Soares, J. Clean. Prod. 135, 679 (2016)

    Article  Google Scholar 

  8. M.J. Borah, A. Das, V. Das, N. Bhuyan, D. Deka, Fuel 242, 345 (2019)

    Article  CAS  Google Scholar 

  9. Z. Yaakob, M. Mohammad, M. Alherbawi, Z. Alam, K. Sopian, Renew. Sustain. Energyy Rev. 18, 184 (2013)

    Article  CAS  Google Scholar 

  10. E.G.S. Junior, V.H. Perez, I. Reyero, A. Serrano-Lotina, O.R. Justo, Fuel 241, 311 (2019)

    Article  CAS  Google Scholar 

  11. D.N. Thoai, C. Tongurai, K. Prasertsit, A. Kumar, Fuel Process. Technol. 168, 97 (2017)

    Article  CAS  Google Scholar 

  12. M. Hapońska, C. Nurra, S. Abelló, M. Makkee, J. Salvadó, C. Torras, Fuel Process. Technol. 185, 1 (2019)

    Article  CAS  Google Scholar 

  13. M. Kouzu, A. Fujimori, R. Fukakusa, N. Satomi, S. Yahagi, Fuel Process. Technol. 181, 311 (2018)

    Article  CAS  Google Scholar 

  14. S. Gryglewicz, Appl. Catal. A 192, 23 (2000)

    Article  CAS  Google Scholar 

  15. M. Farooq, A. Ramli, D. Subbarao, J. Clean. Prod. 59, 131 (2013)

    Article  CAS  Google Scholar 

  16. P. Mierczynski, R. Ciesielski, A. Kedziora, W. Maniukiewicz, O. Shtyka, J. Kubicki, J. Albinska, T.P. Maniecki, Catal. Lett. 145, 1196 (2015)

    Article  CAS  Google Scholar 

  17. W. Xie, H. Peng, L. Chen, Appl. Catal. A 300, 67 (2006)

    Article  CAS  Google Scholar 

  18. W. Chen, Z. Huang, Y. Liu, Q. He, Catal. Commun. 9, 516 (2008)

    Article  CAS  Google Scholar 

  19. W. Xie, Z. Yang, Catal. Lett. 117, 159 (2007)

    Article  CAS  Google Scholar 

  20. A.B. Fadhil, E.T.B. Al-Tikrity, A.M. Khalaf, Fuel 234, 81 (2018)

    Article  CAS  Google Scholar 

  21. V. Mahdavi, F. Abedini, Chem. Eng. Commun. 203, 114 (2016)

    Article  CAS  Google Scholar 

  22. H. Lee, Y. Taufiq-Yap, Process Saf. Environ. Prot. 94, 430 (2015)

    Article  CAS  Google Scholar 

  23. W. Xie, L. Zhao, Energy Convers. Manag. 79, 34 (2014)

    Article  CAS  Google Scholar 

  24. E. Rashtizadeh, F. Farzaneh, J. Taiwan Inst. Chem. Eng. 44, 917 (2013)

    Article  CAS  Google Scholar 

  25. M.B. Gawande, R.K. Pandey, R.V. Jayaram, Catal. Sci. Technol. 2, 1113 (2012)

    Article  CAS  Google Scholar 

  26. W. Xie, Y. Liu, H. Chun, Catal. Lett. 142, 352 (2012)

    Article  CAS  Google Scholar 

  27. Y.H. Taufiq-Yap, Y.H.H.V. Lee, R. Yunus, J.C. Juan, Chem. Eng. J. 178, 342 (2011)

    Article  CAS  Google Scholar 

  28. M.O. Guerrero-Pérez, Catal. Today 285, 226 (2017)

    Article  CAS  Google Scholar 

  29. B. Yoosuk, P. Krasae, B. Puttasawat, P. Udomsap, N. Viriya-empikul, K. Faungnawakij, Chem. Eng. J. 162, 58 (2010)

    Article  CAS  Google Scholar 

  30. K. Faungnawakij, B. Yoosuk, S. Namuangruk, P. Krasae, N. Viriya-empikul, B. Puttasawat, ChemCatChem 4, 209 (2012)

    Article  CAS  Google Scholar 

  31. J. Tantirungrotechai, S. Thepwatee, B. Yoosuk, Fuel 106, 279 (2013)

    Article  CAS  Google Scholar 

  32. A.P.S. Dias, J. Bernardo, P. Felizardo, M.J.N. Correia, Fuel Process. Technol. 102, 146 (2012)

    Article  CAS  Google Scholar 

  33. W.N.N.W. Omar, N.A.S. Amin, Fuel Process. Technol. 92, 2397 (2011)

    Article  CAS  Google Scholar 

  34. M. Joshaghani, D. Yazdani, A.A. Zinatizadeh, J. Iran. Chem. Soc. 14, 2449 (2017)

    Article  CAS  Google Scholar 

  35. R.H. Myers, D.C. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiment, 2nd edn. (Wiley, New York, 2002)

    Google Scholar 

  36. G.E. Box, N.R. Draper, Empirical Model-Building and Response Surfaces (Wiley, New York, 1987)

    Google Scholar 

  37. S. Perincek, K. Duran, J. Clean. Prod. 135, 1179 (2016)

    Article  CAS  Google Scholar 

  38. M. Kumar, M.P. Sharma, Waste Biomass Valoriz. 7, 1105 (2016)

    Article  CAS  Google Scholar 

  39. A. Avinash, A. Murugesan, Fuel 216, 322 (2018)

    Article  CAS  Google Scholar 

  40. G. Dwivedi, M.P. Sharma, Fuel 145, 256 (2015)

    Article  CAS  Google Scholar 

  41. V. Mahdavi, A. Monajemi, J. Taiwan Inst. Chem. Eng. 45, 2286 (2014)

    Article  CAS  Google Scholar 

  42. W.N.N.W. Omar, N.A.S. Amin, Biomass Bioenergy 35, 1329 (2011)

    Article  CAS  Google Scholar 

  43. O.A. Aworanti, S.E. Agarry, A.O. Ajani, Br. Biotechnol. J. 3(2), 116132 (2013)

    Article  Google Scholar 

  44. H. Hamze, M. Akia, F. Yazdani, Process Saf. Environ. Prot. 94, 1 (2015)

    Article  CAS  Google Scholar 

  45. K.S. Kabo, A.R. Yacob, W.A.W.A. Bakar, N.A. Buang, A.M. Bello, A. Ruskam, IOP Conf. Ser. Mater. Sci. Eng. 136(012063), 1 (2016)

    Google Scholar 

  46. A. Witek-Krowiak, K. Chojnacka, D. Podstawczyk, A. Dawiec, K. Pokomeda, Bioresour. Technol. 160, 150 (2014)

    Article  CAS  PubMed  Google Scholar 

  47. J. Zolgharnein, A. Shahmoradi, J.B. Ghasemi, J. Chemom. 27, 12 (2013)

    Article  CAS  Google Scholar 

  48. N. Boz, M. Kara, Chem. Eng. Commun. 196, 80 (2008)

    Article  CAS  Google Scholar 

  49. K. Tanabe, M. Misono, Y. Ono, H. Hattori, Stud. Surf. Sci. Catal. 51, 14 (1989)

    Google Scholar 

  50. W. Xu, L. Gao, S. Wang, G. Xiao, Bioresour. Technol. 159, 286 (2014)

    Article  CAS  PubMed  Google Scholar 

  51. T. Maneerung, S. Kawi, C.H. Wang, Energy Convers. Manag. 92, 234 (2015)

    Article  CAS  Google Scholar 

  52. V. Mahdavi, H.R. Hasheminasab, Phys. Chem. Res. 3, 111 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Arak University, Iran, so authors sincerely thank the research council of Arak University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Mahdavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahbazi, F., Mahdavi, V. & Zolgharnein, J. Preparation and characterization of SrO/MgO nanocomposite as a novel and efficient base catalyst for biodiesel production from waste cooking oil: a statistical approach for optimization. J IRAN CHEM SOC 17, 333–349 (2020). https://doi.org/10.1007/s13738-019-01772-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-019-01772-6

Keywords

Navigation