Skip to main content
Log in

Eco-friendly approach to mineralise 2-nitroaniline using subcritical water oxidation method: use of ANN and RSM in the optimisation and modeling of the process

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this study, the mineralisation of 2-nitroaniline was investigated using the eco-friendly subcritical water oxidation method and the effective oxidising agent, H2O2. Central composite design was utilized to examine the effect of temperature, oxidant concentration, and treatment time on the mineralisation of 2-nitroaniline, to optimise the experimental process and to propose a theoretical equation of the chemical oxygen demand removal percentage. ANOVA test was performed to evaluate the reliability of the process. F and p values were obtained as 23.03 and < 0.0001, respectively. R2 and adjusted R2 were obtained as 0.9540 and 0.9126, respectively. Artificial neural network modeling was used to determine the predicted values. The efficiency of central composite design and artificial neural network was statistically compared as well as by closeness of their predicted values to the experimental values. The maximum chemical oxygen demand removal percentages of 2-nitroaniline at 473 K of temperature, 30 min of treatment time, and 30 mM of H2O2 concentration were found to be 80.15 and 78.03% according to the predicted results of central composite design and artificial neural network. Removal of 2-nitroaniline was also followed using UV–Vis, FT-IR, and NMR spectroscopy. 2-Nitroaniline was removed by 99.88% at 473 K of temperature, 90 min of treatment time, and 120 mM of H2O2. Mineralisation and removal of 2-nitroaniline were also supported by FT-IR and NMR analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.G. Karunanayake, O.A. Todd, M.L. Crowley, L.B. Ricchetti, C.U. Pittman, R. Anderson, T.E. Mlsn, Chem. Eng. J. 319, 75 (2017)

    Article  CAS  Google Scholar 

  2. T. Heberer, Toxicol. Lett. 131, 5 (2002)

    Article  CAS  PubMed  Google Scholar 

  3. T. Rastogi, C. Leder, K. Kuemmerer, Environ. Sci. Technol. 49, 11756 (2015)

    Article  CAS  PubMed  Google Scholar 

  4. G. Kinrys, A.K. Gold, J.J. Worthington, A.A. Nierenberg, J. Int. Med. Res. 46, 927 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  5. B. Du, A.E. Price, W.C. Scott, L.A. Kristofco, A.J. Ramirez, C.K. Chambliss, J.C. Yelderman, B.W. Brooks, Sci. Total Environ. 466–467, 976 (2014)

    Article  CAS  PubMed  Google Scholar 

  6. A. Qureshi, V. Verma, A. Kapley, H.J. Purohit, Int. Biodeterior. Biodegrad. 60, 215 (2007)

    Article  CAS  Google Scholar 

  7. N. Mark, J. Arthur, K. Dontsova, M. Brusseau, S. Taylor, Chemosphere 144, 1249 (2016)

    Article  CAS  PubMed  Google Scholar 

  8. K.O. Garcia, E.C. Teixeira, D.M. Agudelo-Castañeda, M. Braga, P.G. Alabarse, F. Wiegand, Sci. Total Environ. 479–480, 57 (2014)

    Article  CAS  PubMed  Google Scholar 

  9. C.L. He, K.L. Huang, J.H. Huang, J. Colloid Interface Sci. 342, 462 (2010)

    Article  CAS  PubMed  Google Scholar 

  10. M.E. Mahmoud, A.E.H. Abdou, A.K. Shehata, H.M. Header, E.A. Hamed, J. Mol. Liq. 224, 1358 (2016)

    Article  CAS  Google Scholar 

  11. O.A. Zelekew, D.H. Kuo, Appl. Surf. Sci. 393, 110 (2017)

    Article  CAS  Google Scholar 

  12. P. Guo, L. Tang, J. Tang, G. Zeng, B. Huang, H. Dong, Y. Zhang, Y. Zhou, Y. Deng, L. Ma, S. Tan, J. Colloid Interface Sci. 469, 78 (2016)

    Article  CAS  PubMed  Google Scholar 

  13. K.Q. Li, Y. Li, Z. Zheng, J. Hazard. Mater. 178, 553 (2010)

    Article  CAS  PubMed  Google Scholar 

  14. Z.H. Farooqi, K. Naseem, R. Begum, A. Ijaz, J. Inorg. Organomet. Polym Mater. 25, 1554 (2015)

    Article  CAS  Google Scholar 

  15. K. Li, Z. Zheng, X. Huang, G. Zhao, J. Feng, J. Zhang, J. Hazard. Mater. 166, 213 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. Z. Dong, X. Le, X. Li, W. Zhang, C. Dong, J. Ma, Appl. Catal. B 158–159, 129 (2014)

    Article  CAS  Google Scholar 

  17. P. Yang, A.D. Xu, J. Xia, J. He, H.L. Xing, X.M. Zhang, S.Y. Wei, N.N. Wang, Appl. Catal. A 470, 89 (2014)

    Article  CAS  Google Scholar 

  18. S. Silambarasana, A.S. Vangnaia, J. Hazard. Mater. 302, 426 (2016)

    Article  CAS  Google Scholar 

  19. Y. Wang, Y. Zhang, G. Zhao, M. Wu, M. Li, D. Li, Y. Zhang, Y. Zhang, Sep. Purif. Technol. 104, 229 (2013)

    Article  CAS  Google Scholar 

  20. Y.S. Zhao, C. Sun, J.Q. Sun, R. Zhou, Sep. Purif. Technol. 142, 182 (2015)

    Article  CAS  Google Scholar 

  21. J.H. Sun, S.P. Sun, M.H. Fan, H.Q. Guo, Y.F. Lee, R.X. Sun, J. Hazard. Mater. 153, 187 (2008)

    Article  CAS  PubMed  Google Scholar 

  22. L. Ding, Q. Li, D. Zhou, H. Cui, R. Tang, J. Zhai, Electrochim. Acta 77, 302 (2012)

    Article  CAS  Google Scholar 

  23. A. Khalid, M. Arshad, D.E. Crowley, Water Res. 43, 1110 (2009)

    Article  CAS  PubMed  Google Scholar 

  24. S. Gautam, S.P. Kamble, S.B. Sawant, V.G. Pangarkar, Chem. Eng. J. 110, 129 (2005)

    Article  CAS  Google Scholar 

  25. J. Zhang, D. Shan, S. Mu, Polymer 48, 1269 (2007)

    Article  CAS  Google Scholar 

  26. J. Zhang, D. Shan, S. Mu, J. Polym. Sci. A Polym. Chem. 45, 5573 (2007)

    Article  CAS  Google Scholar 

  27. N. Wang, T. Zheng, J. Jiang, P. Wang, Chem. Eng. J. 260, 386 (2015)

    Article  CAS  Google Scholar 

  28. H.H. Sun, S.P. Sun, M.H. Fan, H.Q. Guo, L.P. Qiao, R.X. Sun, J. Hazard. Mater. 148, 172 (2007)

    Article  CAS  PubMed  Google Scholar 

  29. J. Levec, A. Pintar, Catal. Today 124, 172 (2007)

    Article  CAS  Google Scholar 

  30. E. Yabalak, H.A. Döndaş, A.M. Gizir, J. Environ. Sci. Heal. A 52, 210 (2017)

    Article  CAS  Google Scholar 

  31. E. Yabalak, A.M. Gizir, J. Serb. Chem. Soc. 78, 1013 (2013)

    Article  CAS  Google Scholar 

  32. E. Yabalak, A.S. Könen, A. Adigüzel, R.S. Ergene, M. Tunçer, A.M. Gizir, Desalin. Water Treat. 81, 186 (2017)

    Article  CAS  Google Scholar 

  33. E. Yabalak, Ö Görmez, B.G. Sönmez, J. Serb. Chem. Soc. 83, 489 (2018)

    Article  CAS  Google Scholar 

  34. R.S. Ribeiro, A.M.T. Silva, J.L. Figueiredo, J.L. Faria, H.T. Gomes, Appl. Catal. B-Environ. 187, 428 (2016)

    Article  CAS  Google Scholar 

  35. P.R. Gogate, A.B. Pandit, Adv. Environ. Res. 8, 501 (2004)

    Article  CAS  Google Scholar 

  36. S. Daneshvar, N. Hidemi, F. Salak, N. Mahinpey, Can. J. Chem. Eng. 92, 615 (2014)

    Article  CAS  Google Scholar 

  37. E. Yabalak, Ö Görmez, B. Gözmen, A.M. Gizir, Int. J. Ind. Chem. 6, 23 (2015)

    Article  CAS  Google Scholar 

  38. N.C. Loong, M. Basri, L.F. Fang, H.R.F. Masoumi, M. Tripathy, R.A. Karjiban, E. Abdul-Malek, Ind. Crops Prod. 59, 309 (2014)

    Article  CAS  Google Scholar 

  39. J. Zolgharnein, A. Shahmoradi, J.B. Ghasemi, J. Chemometr. 27, 12 (2013)

    Article  CAS  Google Scholar 

  40. E. Yabalak, J. Enviro. Sci. Health, Part A (2018) https://doi.org/10.1080/10934529.2018.1471023

    Article  Google Scholar 

  41. J.A. Lin, C.Hng Kuo, B.Y. Chen, Y. Li, Y.C. Liu, J.H. Chen, C.J. Shieh, Ultrason. Sonochem. 32, 258 (2016)

    Article  CAS  PubMed  Google Scholar 

  42. K.M. Desai, S.A. Survase, P.S. Saudagar, S. Lele, R.S. Singhal, Biochem. Eng. J. 41, 266 (2008)

    Article  CAS  Google Scholar 

  43. K. Ameer, S.W. Bae, Y. Jo, H.G. Lee, A. Ameer, J.H. Kwon, Food Chem. 229, 198 (2017)

    Article  CAS  PubMed  Google Scholar 

  44. C.R.T. Tarley, G. Silveira, W.N.L. dos Santos, G.D. Matos, E.G.P. da Silva, M.A. Bezerra, M. Miró, S.L.C. Ferreira, Microchem. J. 92, 58 (2009)

    Article  CAS  Google Scholar 

  45. Z. Zhang, H. Zheng, J. Hazard. Mater. 172, 1388 (2009)

    Article  CAS  PubMed  Google Scholar 

  46. H. Okuyucu, A. Kurt, E. Arcaklioglu, Mater. Des. 28, 78 (2007)

    Article  CAS  Google Scholar 

  47. K.L. Hsu, H.V. Gupta, S. Sorooshian, Water. Resour. Res. 31, 2517 (1995)

    Article  Google Scholar 

  48. B. Kayan, B. Gözmen, J. Hazard. Mater. 201–202, 100 (2012)

    Article  CAS  PubMed  Google Scholar 

  49. N.E. Jiménez Jado, C. Fernández Sánchez, J.R. Ochoa, Gómez, J. Appl. Electrochem. 34, 551 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This academic work was linguistically supported by the Mersin Technology Transfer Office Academic Writing Center of Mersin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdal Yabalak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 386 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yabalak, E., Yilmaz, Ö. Eco-friendly approach to mineralise 2-nitroaniline using subcritical water oxidation method: use of ANN and RSM in the optimisation and modeling of the process. J IRAN CHEM SOC 16, 117–126 (2019). https://doi.org/10.1007/s13738-018-1487-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-018-1487-8

Keywords

Navigation