Skip to main content

Advertisement

Log in

A modified single-walled carbon nanotubes/carbon-ceramic electrode for simultaneous voltammetric determination of paracetamol and caffeine

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A simple and sensitive differential pulse voltammetry (DPV) procedure, based on a simple modified electrode; carbon-ceramic electrode (CCE) modified with a thin film of single-walled carbon nanotubes (SWCNT), for the simultaneous determination of paracetamol (PC) and caffeine (CAF) was developed. The SWCNT/CCE displayed excellent electrochemical catalytic activities toward PC and CAF oxidation compared with bare CCE. In DPV technique both PC and CAF give sensitive oxidation peaks at 0.71 and 1.38 V vs. saturated calomel electrode, and under the optimized experimental conditions PC and CAF show linear response over the concentration ranges of 0.08–200.0 μM (R 2 = 0.991) and 0.41–300.0 μM (R 2 = 0.990), respectively. The limits of detection (S/N = 3) for PC and CAF were 0.05 and 0.29 μM, respectively. The investigated method showed good stability, reproducibility, repeatability, and high recovery in some real samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.C. Sweetman (Ed), Martindale. The Complete Drug Reference, 33rd ed., (Pharmaceutical Press, London, 2002), p. 71

  2. G.G. Graham, K.F. Scott, Mechanism of action of paracetamol. Am. J. Ther. 12, 46 (2005)

    Article  Google Scholar 

  3. R.N. Goyal, S.P. Singh, Voltammetric determination of paracetamol at C60-modified glassy carbon electrode. Electrochim. Acta 51, 3008 (2006)

    Article  CAS  Google Scholar 

  4. R. Matissek, Evaluation of xanthine derivatives in chocolate: nutritional and chemical aspects. Eur. Food Res. Technol. 205, 175 (1997)

    CAS  Google Scholar 

  5. H. Ashihara, T. Suzuki, Distribution and biosynthesis of caffeine in plants. Front. Biosci. 9, 1864 (2004)

    Article  CAS  Google Scholar 

  6. T. Rieg, H. Steigele, J. Schnermann, K. Richter, H. Osswald, V. Vallon, Requirement of intact adenosine A1 receptors for the diuretic and natriuretic action of the methylxanthines theophylline and caffeine. J. Pharmacol. Exp. Ther. 313, 403 (2005)

    Article  CAS  Google Scholar 

  7. V. Soloveychik, A. Bin-Nun, A. Ionchev, S. Sriram, W. Meadow, Acute hemodynamic effects of caffeine administration in premature infants. J. Perinat. 29, 205 (2009)

    Article  CAS  Google Scholar 

  8. J. Sawynok, Pharmacological rationale for the clinical use of caffeine. Drugs 49, 37 (1995)

    Article  CAS  Google Scholar 

  9. B. Renner, A. Beisel, C. Mueller, U. Werner, G. Kobal, K. Brune, G. Clarke, T. Grattan, Caffeine accelerates absorption and enhances the analgesic effect of acetaminophen. J. Clin. Pharmacol. 47, 715 (2007)

    Article  CAS  Google Scholar 

  10. E. Dinc, A comparative study of the ratio spectra derivative spectrophotometry, Vierordt’s method and high-performance liquid chromatography applied to the simultaneous analysis of caffeine and paracetamol in tablets. J. Pharm. Biomed. Anal. 21, 723 (1999)

    Article  CAS  Google Scholar 

  11. A.B. Moreira, I.L.T. Dias, G.O. Neto, E.A.G. Zagatto, L.T. Kubota, Simultaneous spectrofluorimetric determination of paracetamol and caffeine in pharmaceutical preparations in solid-phase using partial least squares multivariate calibration. Anal. Lett. 39, 349 (2006)

    Article  CAS  Google Scholar 

  12. A. Wang, J. Sun, H. Feng, S. Gao, Z. He, Simultaneous determination of paracetamol and caffeine in human plasma by LC-ESI-MS. Chromatographia 67, 281 (2008)

    Article  CAS  Google Scholar 

  13. J.C.L. Alves, R.J. Poppi, Simultaneous determination of acetylsalicylic acid, paracetamol and caffeine using solid-phase molecular fluorescence and parallel factor analysis. Anal. Chim. Acta 642, 212 (2009)

    Article  CAS  Google Scholar 

  14. R. Krishnamurthy, M.K. Malve, B.M. Shinde, Simultaneous determination of morphine, caffeine, and paracetamol in the urine of addicts by HPTLC and HPLC. J. Planar. Chrom-modern. TLC 13, 171 (2000)

    CAS  Google Scholar 

  15. M.M. Sena, R.J. Poppi, N-way PLS applied to simultaneous spectrophotometric determination of acetylsalicylic acid, paracetamol and caffeine. J. Pharm. Biomed. Anal. 34, 27 (2004)

    Article  CAS  Google Scholar 

  16. Z-.Z. Han, S.-G. Wu, Q.-Y. Li, J. Wang, Determination of acetaminophen, caffeine and chlorphenamine maleate in ganmaolin granules by HPLC. Chinese Pharm. J. 45, 228 (2010)

    CAS  Google Scholar 

  17. M. Ito, T. Suzuki, S. Yada, H. Nakagami, H. Teramoto, E. Yonemochi, K. Terada, Development of a method for nondestructive NIR transmittance spectroscopic analysis of acetaminophen and caffeine anhydrate in intact bilayer tablets. J. Pharm. Biomed. Anal. 53, 396 (2010)

    Article  CAS  Google Scholar 

  18. S. Sun, G. Liu, Y. Wang, Simultaneous determination of acetaminophen, caffeine, and chlorphenamine maleate in paracetamol and chlorphenamine maleate granules. Chromatographia 64, 719 (2006)

    Article  CAS  Google Scholar 

  19. A. Dominguez Vidal, J.F. Garcia Reyes, P. Ortega Barrales, A. Molina Diaz, UV spectrophotometric flow-through multiparameter sensor for the simultaneous determination of acetaminophen, acetylsalicylic acid, and caffeine. Anal. Lett. 35, 2433 (2002)

    Article  CAS  Google Scholar 

  20. A. Haque, J.T. Stewart, Determination of acetaminophen, caffeine, and butalbital in a commercial tablet dosage form by micellar electrokinetic chromatography. J. Liquid Chrom. Related Tech. 22, 2159 (1999)

    Article  CAS  Google Scholar 

  21. C. Pistos, J.T. Stewart, Assay for the simultaneous determination of acetaminophen-caffeine-butalbital in human serum using a monolithic column. J. Pharm. Biomed. Anal. 36, 737 (2004)

    Article  CAS  Google Scholar 

  22. A. Bozdoğan, A.M. Acar, G.K. Kunt, Simultaneous determination of acetaminophen and caffeine in tablet preparations by partial least-squares multivariate spectrophotometric calibration. Talanta 39, 977 (1992)

    Article  Google Scholar 

  23. A.C. Moţ, F. Soponar, A. Medvedovici, C. Sârbu, Simultaneous spectrophotometric determination of aspirin, paracetamol, caffeine, and chlorphenamine from pharmaceutical formulations using multivariate regression methods. Anal. Lett. 43, 804 (2010)

    Article  Google Scholar 

  24. C. Sullivan, J. Sherma, Development and Validation of an HPTLC-Densitometry Method for Assay of Caffeine and Acetaminophen in Multicomponent Extra Strength Analgesic Tablets. J. Liquid Chrom. Related Tech. 26, 3453 (2003)

    Article  CAS  Google Scholar 

  25. K. Delvadiya, R. Kimbahune, P. Kabra, K. Sunil, P. Patel, Spectrophotometric simultaneous analysis of paracetamol, propyphenazone and caffeine in tablet dosage forms. Int. J. Pharm. Pharma. Sci. 3, 170 (2011)

    CAS  Google Scholar 

  26. G.M. Hadad, W.M.M. Mahmoud, The use of a monolithic column to improve the simultaneous determination of caffeine, paracetamol, pseudoephedrine, aspirin, dextromethorphan, chlorpheniramine in pharmaceutical formulations by HPLC-A comparison with a conventional reversed-phase silica-based column. J. Liquid Chrom. Related Tech. 34, 2516 (2011)

    Article  CAS  Google Scholar 

  27. H. Tavallali, S.F. Zareiyan, M. Naghian, An efficient and simultaneous analysis of caffeine and paracetamol in pharmaceutical formulations using TLC with a fluorescence plate reader. J. AOAC Int. 94, 1094 (2011)

    CAS  Google Scholar 

  28. O.-W. Lau, S.-F. Luk, Y.-M. Cheung, Simultaneous determination of ascorbic acid, caffeine and paracetamol in drug formulations by differential-pulse voltammetry using a glassy carbon electrode. Analyst 114, 1047 (1989)

    Article  CAS  Google Scholar 

  29. J.-M. Zen, Y.-S. Ting, Simultaneous determination of caffeine and acetaminophen in drug formulations by square-wave voltammetry using a chemically modified electrode. Anal. Chim. Acta 342, 175 (1997)

    Article  CAS  Google Scholar 

  30. B.C. Lourenção, R.A. Medeiros, R.C. Rocha-Filho, L.H. Mazo, O. Fatibello-Filho, Simultaneous voltammetric determination of paracetamol and caffeine in pharmaceutical formulations using a boron-doped diamond electrode. Talanta 78, 748 (2009)

    Article  Google Scholar 

  31. B.J. Sanghavi, A.K. Srivastava, Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multi walled carbon nanotube paste electrode. Electrochim. Acta 55, 8638 (2010)

    Article  CAS  Google Scholar 

  32. M. Meyyappan, Carbon nanotubes science and applications (CRC Press LLC, 2005)

  33. R.N. Goyal, M. Oyama, V.K. Gupta, S.P. Singh, R.A. Sharma, Sensors for 5-hydroxytryptamine and 5-hydroxyindole acetic acid based on nanomaterial modified electrodes. Sens. Actuators B: Chemical 134, 816 (2008)

    Article  CAS  Google Scholar 

  34. A.A. Ensafi, H. Karimi-Maleh, Modified multiwall carbon nanotubes paste electrode as a sensor for simultaneous determination of 6-thioguanine and folic acid using ferrocenedicarboxylic acid as a mediator. J. Electroanal. Chem. 640, 75 (2010)

    Article  CAS  Google Scholar 

  35. N. Dalali, M. Ashouri, S. Nakisa, Solid phase extraction based on modified multi-walled carbon nanotubes packed column for enrichment of copper and lead on-line incorporated with flame atomic absorption spectrometry. J. Iran. Chem. Soc. 9, 181 (2012)

    Article  CAS  Google Scholar 

  36. H. Beitollah, M. Goodarzian, M.A. Khalilzadeh, H. Karimi-Maleh, M. Hassanzadeh, M. Tajbakhsh, Electrochemical behaviors and determination of carbidopa on carbon nanotubes ionic liquid paste electrode. J. Mol. Liq. 173, 137 (2012)

    Article  CAS  Google Scholar 

  37. A.A. Ensafi, H. Karimi-Maleh, S. Mallakpour, B. Rezaei, Highly sensitive voltammetric sensor based on catechol-derivative-multiwall carbon nanotubes for the catalytic determination of captopril in patient human urine samples. Colloids Surf. B 87, 480 (2011)

    Article  CAS  Google Scholar 

  38. M. Valcárcel, B.M. Simonet, S. Cárdenas, B. Súarez, Present and future applications of carbon nanotubes to analytical science. Anal. Bioanal. Chem. 382, 1783 (2005)

    Article  Google Scholar 

  39. M. Trojanowicz, Analytical applications of carbon nanotubes: a review. TrAC, Trends Anal. Chem. 25, 480 (2006)

    Article  CAS  Google Scholar 

  40. A. Merkoçi, Carbon nanotubes in analytical sciences. Microchim. Acta 152, 157 (2006)

    Article  Google Scholar 

  41. M. Tsionsky, G. Gun, V. Glezer, O. Lev, Sol-gel-derived ceramic-carbon composite electrodes: introduction and scope of applications. Anal. Chem. 66, 1747 (1994)

    Article  CAS  Google Scholar 

  42. O. Lev, Z. Wu, S. Bharathi, V. Glezer, A. Modestov, J. Gun, L. Rabinovich, S. Sampath, Sol–gel materials in electrochemistry. Chem. Mater. 9, 2354 (1997)

    Article  CAS  Google Scholar 

  43. B. Habibi, N. Delnavaz, Electrocatalytic oxidation of formic acid and formaldehyde on platinum nanoparticles decorated carbon-ceramic substrate. Int. J. Hydrogen Energy 35, 8831 (2010)

    Article  CAS  Google Scholar 

  44. B. Habibi, M. Jahanbakhshi, M.H. Pournaghi-Azar, Simultaneous determination of acetaminophen and dopamine using SWCNT modified carbon-ceramic electrode by differential pulse voltammetry. Electrochim. Acta 56, 2888 (2011)

    Article  CAS  Google Scholar 

  45. B. Habibi, M.H. Pournaghi-Azar, Simultaneous determination of ascorbic acid, dopamine and uric acid by use of a MWCNT modified carbon-ceramic electrode and differential pulse voltammetry. Electrochim. Acta 55, 5492 (2010)

    Article  CAS  Google Scholar 

  46. T. Alizadeh, M.R. Ganjali, M. Zare, P. Norouzi, Development of a voltammetric sensor based on a molecularly imprinted polymer (MIP) for caffeine measurement. Electrochim. Acta 55, 1568 (2010)

    Article  CAS  Google Scholar 

  47. S. Yang, R. Yang, G. Li, L. Qu, J. Li, L. Yu, Nafion/multi-wall carbon nanotubes composite film coated glassy carbon electrode for sensitive determination of caffeine. J. Electroanal. Chem. 639, 77 (2010)

    Article  CAS  Google Scholar 

  48. S. Wang, F. Xie, R. Hu, Carbon-coated nickel magnetic nanoparticles modified electrodes as a sensor for determination of acetaminophen. Sens. Actuators, B 123, 495 (2007)

    Article  CAS  Google Scholar 

  49. H. Xiong, H. Xu, L. Wang, S. Wang, Characterization and sensing properties of a carbon nanotube paste electrode for acetaminophen. Microchim. Acta 167, 129 (2009)

    Article  CAS  Google Scholar 

  50. Q. Wan, X. Wang, F. Yu, X. Wang, N. Yang, Effects of capacitance and resistance of MWNT-film coated electrodes on voltammetric detection of acetaminophen. J. Appl. Electrochem. 39, 1145 (2009)

    Article  CAS  Google Scholar 

  51. B. Brunetti, E. Desimoni, P. Casati, Determination of caffeine at a nafion-covered glassy carbon electrode. Electroanalysis 9, 385 (2007)

    Article  Google Scholar 

  52. C.A. Martínez-Huitle, N. Suely Fernandes, S. Ferro, A. De Battisti, M.A. Quiroz, Fabrication and application of Nafion®-modified boron-doped diamond electrode as sensor for detecting caffeine. Diamond Relat. Mater. 19, 1188 (2010)

    Article  Google Scholar 

  53. B. Habibi, M. Jahanbakhshi, M.H. Pournaghiazar, Electrochemical oxidation and nanomolar detection of acetaminophen at a carbon-ceramic electrode modified by carbon nanotubes: a comparison between multi walled and single walled carbon nanotubes. Microchim. Acta 172, 147 (2011)

    Article  CAS  Google Scholar 

  54. B. Habibi, M. Abazari, M.H. Pournaghiazar, A carbon nanotube modified electrode for determination of caffeine by differential pulse voltammetry. Chinese J. Catal. 33, 1783 (2012)

    Article  CAS  Google Scholar 

  55. N. Wangfuengkanagul, O. Chailapakul, Electrochemical analysis of acetaminophen using a boron-doped diamond thin film electrode applied to flow injection system. J. Pharm. Biomed. Anal. 28, 841 (2002)

    Article  CAS  Google Scholar 

  56. J.-Y. Sun, K.-J. Huang, S.-Y. Wei, Z.-W. Wu, F.-P. Ren, A graphene-based electrochemical sensor for sensitive determination of caffeine. Colloids Surf. B 84, 421 (2011)

    Article  CAS  Google Scholar 

  57. G.A.M. Mersal, Experimental and computational studies on the electrochemical oxidation of caffeine at pseudo carbon paste electrode and its voltammetric determination in different real samples. Food Anal. Methods 5, 520 (2012)

    Article  Google Scholar 

  58. P.J. Britto, K.S.V. Santhanam, A. Rubio, J.A. Alonso, P.M. Ajayan, Improved charge transfer at carbon nanotube electrodes. Adv. Mater. 11, 154 (1999)

    Article  CAS  Google Scholar 

  59. R.N. Goyal, S. Bishnoi, B. Agrawal, Electrochemical sensor for the simultaneous determination of caffeine and aspirin in human urine samples. J. Electroanal. Chem. 655, 97 (2011)

    Article  CAS  Google Scholar 

  60. V.K. Gupta, A.K. Jain, S.K. Shoora, Multiwall carbon nanotube modified glassy carbon electrode as voltammetric sensor for the simultaneous determination of ascorbic acid and caffeine. Electrochim. Acta 93, 248 (2013)

    Article  CAS  Google Scholar 

  61. M. Amare, S. Admassie, Polymer modified glassy carbon electrode for the electrochemical determination of caffeine in coffee. Talanta 93, 122 (2012)

    Article  CAS  Google Scholar 

  62. Raj MA, Abraham John S, Simultaneous determination of uric acid, xanthine, hypoxanthine and caffeine in human blood serum and urine samples using electrochemically reduced graphene oxide modified electrode. Anal. Chim. Acta (2013). http://dx.doi.org.scopeesprx.elsevier.com/10.1016/j.aca.2013.02.017

  63. J.M. Zen, Y.S. Ting, Y. Shih, Voltammetric determination of caffeine in beverages using a chemically modified electrode. Analyst 123, 1145 (1998)

    Article  CAS  Google Scholar 

  64. J. Zhang, L.P. Wang, W. Guo, X.D. Peng, M. Li, Z.B. Yuan, Sensitive differential pulse stripping voltammetry of caffeine in medicines and cola using a sensor based on multi-walled carbon nanotubes and nafion. Int. J. Electrochem. Sci. 6, 997 (2011)

    CAS  Google Scholar 

  65. M. Roodbari Shahmiri, A. Bahari, H. Karimi-Maleh, R. Hosseinzadeh, N. Mirnia, Ethynylferrocene-NiO/MWCNT nanocomposite modified carbon paste electrode as a novel voltammetric sensor for simultaneous determination of glutathione and acetaminophen. Sen. Actuators B: Chemical 177, 70 (2013)

    Article  Google Scholar 

  66. R.N. Goyal, V.K. Gupta, M. Oyama, N. Bachheti, Differential pulse voltammetric determination of paracetamol at nanogold modified indium tin oxide electrode. Electrochem. Commun. 7, 803 (2005)

    Article  CAS  Google Scholar 

  67. A. Câmpean, M. Tertiş, R. Săndulescu, Voltammetric determination of some alkaloids and other compounds in pharmaceuticals and urine using an electrochemically activated glassy carbon electrode. Cent. Eur. J. Chem. 9, 688 (2011)

    Article  Google Scholar 

  68. A.A. Ensafi, H. Karimi-Maleh, S. Mallakpour, M. Hatami, Simultaneous determination of N-acetylcysteine and acetaminophen by voltammetric method using N-(3,4-dihydroxyphenethyl)-3,5-dinitrobenzamide modified multiwall carbon nanotubes paste electrode. Sen. Actuators B: Chemical 155, 464 (2011)

    Article  CAS  Google Scholar 

  69. B.C. Lourenção, R.A. Medeiros, R.C. Rocha-Filho, O. Fatibello-Filho, Simultaneous differential pulse voltammetric determination of ascorbic acid and caffeine in pharmaceutical formulations using a boron-doped diamond electrode. Electroanalysis 22, 1717 (2010)

    Article  Google Scholar 

  70. A.A. Ensafi, H. Karimi-Maleh, S. Mallakpour, Simultaneous determination of ascorbic acid, acetaminophen, and tryptophan by square wave voltammetry using N-(3,4-dihydroxyphenethyl)-3,5-dinitrobenzamide-modified carbon nanotubes paste electrode. Electroanalysis 24, 666 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the research council of Azarbaijan Shahid Madani University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biuck Habibi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habibi, B., Jahanbakhshi, M. & Abazari, M. A modified single-walled carbon nanotubes/carbon-ceramic electrode for simultaneous voltammetric determination of paracetamol and caffeine. J IRAN CHEM SOC 11, 511–521 (2014). https://doi.org/10.1007/s13738-013-0324-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-013-0324-3

Keywords

Navigation