Skip to main content
Log in

Multivariate curve resolution-alternating least squares (MCR-ALS) and central composite experimental design for monitoring and optimization of simultaneous removal of some organic dyes

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this work, multivariate curve resolution-alternating least squares (MCR-ALS) has been applied to resolve and study the simultaneous degradation of three toxic organic dyes using Fenton reaction. Second-order kinetic-spectrophotometric data in the simultaneous degradation of malachite green, crystal violet and methylene blue were analyzed by MCR analysis to get their concentration profiles and calculate their degradation factors. The effect of three parameters (Fe2+, H2O2 concentration and initial pH) and their possible interaction in the simultaneous degradation of mentioned dyes were studied and optimized using experimental design and response surface method. Acquiring second-order data makes possible the analysis and study of the studied dyes in the gray systems which is termed as second-order advantage in the literatures. The prominent point of this work is the combination of second-order data and response surface methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Zollinger, Color Chemistry. Synthesis, Properties and Applications of Organic Dyes and Pigments, 3rd edn.(VCH, New York, 1991)

  2. B.C. Kelly, F.A.P.C. Gobas, Environ. Sci. Technol. 37, 2966 (2003)

    Article  CAS  Google Scholar 

  3. D.K. Sharma, H.S. Saini, M. Singh, S.S. Chimni, B.S. Chadha, J. Ind. Microbiol. Biotechnol. 31, 109 (2004)

    Article  CAS  Google Scholar 

  4. H. Kaşgöz, Polym. Bull. 56, 517 (2006)

    Article  Google Scholar 

  5. M. Özacar, İ.A. Şengil, Adsorption. 8, 301 (2002)

    Article  Google Scholar 

  6. A.R. Khataee, G. Dehghan, J. Taiwan Inst, Chem. E. 42, 26 (2011)

    CAS  Google Scholar 

  7. A. Sakalis, D. Ansorgová, M. Holčapek, P. Jandera, A. Voulgaropoulos, Int. J. Environ. Anal. Chem. 84, 875 (2004)

    Article  CAS  Google Scholar 

  8. S. Mohajeri, H. Abdul Aziz, M.H. Isab, M.A. Zahed, M.N. Adlan, J. Hazard. Mater. 176, 749 (2010)

    Article  CAS  Google Scholar 

  9. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Water Res. 44, 2997 (2010)

    Article  CAS  Google Scholar 

  10. E.G. Garrido-Ramirez, B.K.G. Theng, M.L. Mora, Appl. Clay Sci. 47, 182 (2010)

    Article  CAS  Google Scholar 

  11. J.J. Pignatello, E. Oliveros, A. MacKay, Environ. Sci. Technol. 36, 1 (2006)

    CAS  Google Scholar 

  12. E. Neyens, J. Baeyens, J. Hazard. Mater. 98, 33 (2003)

    Article  CAS  Google Scholar 

  13. C. Fernández, M.S. Larrechi, M.P. Callao, Anal. Chem. 29, 1202 (2010)

    Google Scholar 

  14. M.M. Galera, M.D.G. García, H.C. Goicoechea, Anal. Chem. 26, 1032 (2007)

    CAS  Google Scholar 

  15. A.K. Gupta, A. Pal, C. Sahoo, Dyes Pigments. 69, 224 (2006)

    Article  CAS  Google Scholar 

  16. K. Sahel, N. Perol, F. Dappozze, M. Bouhent, Z. Derriche, C. Guillard, J. Photochem. Photobiol. A 212, 107 (2010)

    Article  CAS  Google Scholar 

  17. M. Mkandawire, J. Förster, D. Fiedler, H. Böttcher, W. Pompe, Int. J. Environ. Anal. Chem. 89, 529 (2009)

    Article  CAS  Google Scholar 

  18. S. Wold, M. Sjöström, L. Eriksson, Chemom. Intell. Lab. Syst. 58, 109 (2001)

    Article  CAS  Google Scholar 

  19. B. Hemmateenejad, M. Akhond, F. Samari, Spectrochim. Acta Part A. 67, 958 (2007)

    Article  Google Scholar 

  20. T. Madrakian, A. Afkhami, M. Borazjani, M. Bahram, Spectrochim. Acta Part A. 61, 2988 (2005)

    Article  CAS  Google Scholar 

  21. R.G. Brereton, Chemometrics: data analysis for the laboratory and chemical plant (Wiley, Chichester, 2003)

    Book  Google Scholar 

  22. A. De Juan, R. Tauler, Anal. Chem. 36, 4 (2006)

    Google Scholar 

  23. R. Tauler, Chemom. Intell. Lab. Syst. 30, 133 (1995)

    Article  CAS  Google Scholar 

  24. N.E. Llamas, M. Garrido, M.S. Di Nezio, B.S.F. Band, Anal. Chim. Acta 655, 38 (2009)

    Article  CAS  Google Scholar 

  25. H.C. Goicoechea, A.C. Olivieri, R. Tauler, Analyst 135, 636 (2010)

    Article  CAS  Google Scholar 

  26. M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Talanta 76, 965 (2008)

    Article  CAS  Google Scholar 

  27. G. Sudarjanto, B. Keller-Lehmann, J. Keller, J. Hazard. Mater. 138, 160 (2006)

    Article  CAS  Google Scholar 

  28. A. Naseri, H. Ayadi-Anzabi, Anal. Methods 4, 153 (2012)

    Article  CAS  Google Scholar 

  29. M. Azami, M. Bahram, S. Nouri, A. Naseri, J. Serb. Chem. Soc. 77, 235 (2012)

    Article  CAS  Google Scholar 

  30. A.R. Khataee, M. Safarpour, A. Naseri, M. Zarei, J. Electroanal. Chem. 672, 53 (2012)

    Article  CAS  Google Scholar 

  31. C. Fernández, A. de Juan, M.P. Callao, M.S. Larrechi, Chemom. Intell. Lab. Syst. 114, 64 (2012)

    Article  Google Scholar 

  32. C. Fernández, M.S. Larrechi, M.P. Callao, J. Hazard. Mater. 180, 474 (2010)

    Article  Google Scholar 

  33. C. Fernández, M.S. Larrechi, M.P. Callao, Talanta 79, 1292 (2009)

    Article  Google Scholar 

  34. J. Jaumot, R. Gargallo, A. De Juan, R. Tauler, Chemom. Intell. Lab. Syst. 76, 101 (2005)

    Article  CAS  Google Scholar 

  35. E. Khan, W. Wirojanagud, N. Sermsai, J. Hazard. Mater. 161, 1024 (2009)

    Article  CAS  Google Scholar 

  36. C. Galindo, P. Jacques, A. Kalt, J. Photochem. Photobiol. A 141, 47 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Bahram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalejahi, B.M., Bahram, M., Naseri, A. et al. Multivariate curve resolution-alternating least squares (MCR-ALS) and central composite experimental design for monitoring and optimization of simultaneous removal of some organic dyes. J IRAN CHEM SOC 11, 241–248 (2014). https://doi.org/10.1007/s13738-013-0293-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-013-0293-6

Keywords

Navigation