Skip to main content

Advertisement

Log in

Early detection of thiamine deficiency by non-thyroidal illness syndrome in a hemodialysis patient

  • Case Report
  • Published:
CEN Case Reports Aims and scope Submit manuscript

Abstract

An 88-year-old male patient on maintenance hemodialysis (HD) therapy experienced gradual losses in appetite and liveliness during the course of 1 month. Physical examinations revealed no abnormalities. However, blood testing indicated non-thyroidal illness syndrome (NTIS) typically observed in patients with severe illness, with serum levels of thyroid stimulating hormone, free triiodothyronine, and free thyroxine of 0.17 μIU/mL, < 1.0 pg/mL, and 0.23 ng/dL, respectively. Brain magnetic resonance imaging to exclude the possibility of central hypothyroidism unexpectedly displayed slight abnormalities inside of the thalami that were characteristic of Wernicke’s encephalopathy. Additional examination disclosed low serum thiamine of 20 ng/mL. Thiamine injections of 100 mg at every HD treatment rapidly restored his appetite, liveliness, and NTIS findings. HD patients are at a particularly high risk of thiamine deficiency (TD) and associated severe symptoms due to losses of thiamine during HD sessions. However, its non-specific initial symptoms, including decreases in appetite and liveliness, as well as undetectability in routine blood tests complicate early detection, resulting in underdiagnosis and more severe outcomes. In the present case, TD manifested only as non-specific symptoms and was ultimately revealed by the presence of NTIS, which was resolved with thiamine supplementation. Thus, NTIS might assist in the early detection of TD as an initial sign in HD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data are available upon request.

References

  1. Tylicki A, Łotowski Z, Siemieniuk M, Ratkiewicz A. Thiamine and selected thiamine antivitamins—biological activity and methods of synthesis. Biosci Rep. 2018;38(1):BSR20171148. https://doi.org/10.1042/BSR20171148.

    Article  CAS  Google Scholar 

  2. Dhir S, Tarasenko M, Napoli E, Giulivi C. Neurological, psychiatric, and biochemical aspects of thiamine deficiency in children and adults. Front Psychiatry. 2019. https://doi.org/10.3389/fpsyt.2019.00207.

    Article  Google Scholar 

  3. Hung SC, Hung SH, Tarng DC, Yang WC, Chen TW, Huang TP. Thiamine deficiency and unexplained encephalopathy in hemodialysis and peritoneal dialysis patients. Am J Kidney Dis. 2001;38(5):941–7. https://doi.org/10.1053/ajkd.2001.28578.

    Article  CAS  Google Scholar 

  4. Bossola M, Di Stasio E, Viola A, Leo A, Carlomagno G, Monteburini T, et al. Dietary intake of trace elements, minerals, and vitamins of patients on chronic hemodialysis. Int Urol Nephrol. 2014;46(4):809–15. https://doi.org/10.1007/s11255-014-0689-y.

    Article  CAS  Google Scholar 

  5. Bukhari FJ, Moradi H, Gollapudi P, Ju Kim H, Vaziri ND, Said HM. Effect of chronic kidney disease on the expression of thiamin and folic acid transporters. Nephrol Dial Transpl. 2011;26(7):2137–44. https://doi.org/10.1093/ndt/gfq675.

    Article  CAS  Google Scholar 

  6. Vetreno RP, Ramos RL, Anzalone S, Savage LM. Brain and behavioral pathology in an animal model of Wernicke’s encephalopathy and Wernicke-Korsakoff Syndrome. Brain Res. 2012;1436:178–92. https://doi.org/10.1016/j.brainres.2011.11.038.

    Article  CAS  Google Scholar 

  7. Ebels EJ. Underlying illness in Wernicke’s encephalopathy. Analysis of possible causes of under-diagnosis. Eur Neurol. 1974;12(4):226–8. https://doi.org/10.1159/000114622.

    Article  CAS  Google Scholar 

  8. Ihara M, Ito T, Yanagihara C, Nishimura Y. Wernicke’s encephalopathy associated with hemodialysis: report of two cases and review of the literature. Clin Neurol Neurosurg. 1999;101(2):118–21. https://doi.org/10.1016/s0303-8467(99)00014-1.

    Article  CAS  Google Scholar 

  9. Sriram K, Manzanares W, Joseph K. Thiamine in nutrition therapy. Nutr Clin Pract. 2012;27(1):41–50. https://doi.org/10.1177/0884533611426149.

    Article  Google Scholar 

  10. Sechi G, Serra A. Wernicke’s encephalopathy: new clinical settings and recent advances in diagnosis and management. Lancet Neurol. 2007;6(5):442–55. https://doi.org/10.1016/s1474-4422(07)70104-7.

    Article  CAS  Google Scholar 

  11. Bossola M, Giungi S, Luciani G, Tazza L. Appetite in chronic hemodialysis patients: a longitudinal study. J Ren Nutr. 2009;19(5):372–9. https://doi.org/10.1053/j.jrn.2009.01.015.

    Article  CAS  Google Scholar 

  12. Bossola M, Tazza L, Giungi S, Luciani G. Anorexia in hemodialysis patients: an update. Kidney Int. 2006;70(3):417–22. https://doi.org/10.1038/sj.ki.5001572.

    Article  CAS  Google Scholar 

  13. Kaptein EM, Robinson WJ, Grieb DA, Nicoloff JT. Peripheral serum thyroxine, triiodothyronine and reverse triiodothyronine kinetics in the low thyroxine state of acute nonthyroidal illnesses. A noncompartmental analysis. J Clin Invest. 1982;69(3):526–35. https://doi.org/10.1172/jci110478.

    Article  CAS  Google Scholar 

  14. Fliers E, Boelen A. An update on non-thyroidal illness syndrome. J Endocrinol Invest. 2021;44(8):1597–607. https://doi.org/10.1007/s40618-020-01482-4.

    Article  CAS  Google Scholar 

  15. Kanda E, Kato A, Masakane I, Kanno Y. A new nutritional risk index for predicting mortality in hemodialysis patients: Nationwide cohort study. PLoS ONE. 2019;14(3): e0214524. https://doi.org/10.1371/journal.pone.0214524.

    Article  CAS  Google Scholar 

  16. Yamada K, Furuya R, Takita T, Maruyama Y, Yamaguchi Y, Ohkawa S, et al. Simplified nutritional screening tools for patients on maintenance hemodialysis. Am J Clin Nutr. 2008;87(1):106–13. https://doi.org/10.1093/ajcn/87.1.106.

    Article  CAS  Google Scholar 

  17. Wajner SM, Maia AL. New insights toward the acute non-thyroidal illness syndrome. Front Endocrinol (Lausanne). 2012;3:8. https://doi.org/10.3389/fendo.2012.00008.

    Article  Google Scholar 

  18. Fragidis S, Sombolos K, Thodis E, Panagoutsos S, Mourvati E, Pikilidou M, et al. Low T3 syndrome and long-term mortality in chronic hemodialysis patients. World J Nephrol. 2015;4(3):415–22. https://doi.org/10.5527/wjn.v4.i3.415.

    Article  Google Scholar 

  19. Van den Berghe G. Dynamic neuroendocrine responses to critical illness. Front Neuroendocrinol. 2002;23(4):370–91. https://doi.org/10.1016/S0091-3022(02)00006-7.

    Article  CAS  Google Scholar 

  20. Pappa TA, Vagenakis AG, Alevizaki M. The nonthyroidal illness syndrome in the non-critically ill patient. Eur J Clin Invest. 2011;41(2):212–20. https://doi.org/10.1111/j.1365-2362.2010.02395.x.

    Article  CAS  Google Scholar 

  21. Warner MH, Beckett GJ. Mechanisms behind the non-thyroidal illness syndrome: an update. J Endocrinol. 2010;205(1):1–13. https://doi.org/10.1677/JOE-09-0412.

    Article  CAS  Google Scholar 

  22. Docter R, Krenning EP, de Jong M, Hennemann G. The sick euthyroid syndrome: changes in thyroid hormone serum parameters and hormone metabolism. Clin Endocrinol (Oxf). 1993;39(5):499–518. https://doi.org/10.1111/j.1365-2265.1993.tb02401.x.

    Article  CAS  Google Scholar 

  23. Jankowska M, Rudnicki-Velasquez P, Storoniak H, Rutkowski P, Rutkowski B, Krzymiński K, et al. Thiamine diphosphate status and dialysis-related losses in end-stage kidney disease patients treated with hemodialysis. Blood Purif. 2017;44(4):294–300. https://doi.org/10.1159/000480651.

    Article  CAS  Google Scholar 

  24. Boelen A, Wiersinga WM, Fliers E. Fasting-induced changes in the hypothalamus-pituitary-thyroid axis. Thyroid. 2008;18(2):123–9. https://doi.org/10.1089/thy.2007.0253.

    Article  CAS  Google Scholar 

  25. Langouche L, Vander Perre S, Marques M, Boelen A, Wouters PJ, Casaer MP, et al. Impact of early nutrient restriction during critical illness on the nonthyroidal illness syndrome and its relation with outcome: a randomized, controlled clinical study. J Clin Endocrinol Metab. 2013;98(3):1006–13. https://doi.org/10.1210/jc.2012-2809.

    Article  CAS  Google Scholar 

  26. Croxson MS, Ibbertson HK. Low serum triiodothyronine (T3) and hypothyroidism in anorexia nervosa. J Clin Endocrinol Metab. 1977;44(1):167–74. https://doi.org/10.1210/jcem-44-1-167.

    Article  CAS  Google Scholar 

  27. Gardner DF, Kaplan MM, Stanley CA, Utiger RD. Effect of tri-iodothyronine replacement on the metabolic and pituitary responses to starvation. N Engl J Med. 1979;300(11):579–84. https://doi.org/10.1056/nejm197903153001102.

    Article  CAS  Google Scholar 

  28. Sulimani RA. The effects of Ramadan fasting on thyroid functions in healthy male subjects. Nutr Res. 1988;8(5):549–52. https://doi.org/10.1016/S0271-5317(88)80076-9.

    Article  Google Scholar 

  29. Ahmadinejad Z, Ziaee V, Rezaee M, Yarmohammadi L, Shaikh H, Bozorgi F. The effect of Ramadan fasting on thyroid hormone profile: a cohort study. Pak J Biol Sci. 2006;9(10):1999–2002. https://doi.org/10.3923/pjbs.2006.1999.2002.

    Article  CAS  Google Scholar 

  30. de Vries EM, van Beeren HC, Ackermans MT, Kalsbeek A, Fliers E, Boelen A. Differential effects of fasting vs food restriction on liver thyroid hormone metabolism in male rats. J Endocrinol. 2015;224(1):25–35. https://doi.org/10.1530/JOE-14-0533.

    Article  CAS  Google Scholar 

  31. Boelen A, van Beeren M, Vos X, Surovtseva O, Belegri E, Saaltink DJ, et al. Leptin administration restores the fasting-induced increase of hepatic type 3 deiodinase expression in mice. Thyroid. 2012;22(2):192–9. https://doi.org/10.1089/thy.2011.0289.

    Article  CAS  Google Scholar 

  32. De Andrade P, Neff L, Strosova M, Arsenijevic D, Patthey-Vuadens O, Scapozza L, et al. Caloric restriction induces energy-sparing alterations in skeletal muscle contraction, fiber composition and local thyroid hormone metabolism that persist during catch-up fat upon refeeding. Front Physiol. 2015. https://doi.org/10.3389/fphys.2015.00254.

    Article  Google Scholar 

  33. Kaptein EM. Thyroid hormone metabolism and thyroid diseases in chronic renal failure. Endocr Rev. 1996;17(1):45–63. https://doi.org/10.1210/edrv-17-1-45.

    Article  CAS  Google Scholar 

  34. Aomura D, Kurasawa Y, Harada M, Hashimoto K, Kamijo Y. Brain MRI detection of early Wernicke's encephalopathy in a hemodialysis patient. 2022;10(3):e05539. https://doi.org/10.1002/ccr3.5539.

Download references

Acknowledgements

None.

Funding

The authors received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

DA drafted the article. YK, MH, KH, and YK revised the article critically for important intellectual content and gave final approval of the submitted version.

Corresponding author

Correspondence to Daiki Aomura.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Ethical approval

The present case report adhered to the Declaration of Helsinki.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aomura, D., Kurasawa, Y., Harada, M. et al. Early detection of thiamine deficiency by non-thyroidal illness syndrome in a hemodialysis patient. CEN Case Rep 12, 110–115 (2023). https://doi.org/10.1007/s13730-022-00729-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13730-022-00729-8

Keywords

Navigation