Skip to main content
Log in

Facile preparation of cellulose–attapulgite nanocomposite hydrogel for dye adsorption

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Attapulgite is a kind of silicate with a nano-sized rod-like morphology. In this research, a novel nanocomposite hydrogel based on cellulose and attapulgite was fabricated by a facile method and its adsorption properties for methylene blue were investigated. First, cellulose was dissolved in 7 wt% NaOH/12 wt% urea solution within 2 min, and then cellulose was cross-linked with sodium alginate by epichlorohydrin in presence of attapulgite at 50 °C for 4 h. By this facile approach, cellulose–attapulgite nanocomposite hydrogel was fabricated. SEM observation showed that nanocomposite hydrogel exhibited a porous structure and rough inner surface and attapulgite was incorporated inside. The FTIR and XPS spectra confirmed the cross-linking between cellulose and sodium alginate. The swelling experiment results revealed that sodium alginate enhanced the swelling property of cellulose hydrogel. Swelling degree of cellulose–alginate increased from 36.9 to 42.8 with the increase of sodium alginate content, while swelling degree of pure cellulose hydrogel was 36.3. The addition of attapulgite reduced the swelling degree of nanocomposite hydrogel. Attapulgite enhanced the adsorption capacity of nanocomposite hydrogel compared to the hydrogel without attapulgite. The maximum adsorption capacity of nanocomposite hydrogel was 24.3 mg g−1. Further adsorption kinetics and adsorption isotherm experiments showed that the pseudo-second-order adsorption model and Freundlich model best described the adsorption kinetics and isotherm, respectively. These results suggest that the nanocomposite hydrogel prepared by this facile method can be used in removing dyes from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Mahdavinia GR, Aghaie H, Sheykhloie H, Vardini MT, Etemadi H (2013) Synthesis of CarAlg/MMt nanocomposite hydrogels and adsorption of cationic crystal violet. Carbohydr Polym 98:358–365

    Article  CAS  PubMed  Google Scholar 

  2. Rashidzadeh A, Olad A, Salari D (2015) The effective removal of methylene blue dye from aqueous solutions by NaAlg-g-poly(acrylic acid-co-acryl amide)/clinoptilolite hydrogel nanocomposite. Fiber Polym 16:354–362

    Article  CAS  Google Scholar 

  3. Abdolhosseinzadeh M, Peighambardoust SJ, Erfan-Niya H, Mohammadzadeh Pakdel P (2018) Swelling and auramine-O adsorption of carboxymethyl cellulose grafted poly(methyl methacrylate)/Cloisite 30B nanocomposite hydrogels. Iran Polym J 27:807–818

    Article  CAS  Google Scholar 

  4. Yang R, Li H, Huang M, Yang H, Li A (2016) A review on chitosan-based flocculants and their applications in water treatment. Water Res 95:59–89

    Article  CAS  PubMed  Google Scholar 

  5. Qiu H, Qiu Z, Wang J, Zhang R, Zheng F (2014) Enhanced swelling and methylene blue adsorption of polyacrylamide-based superabsorbents using alginate modified montmorillonite. J Appl Polym Sci 131:1–9

    Google Scholar 

  6. Mahdavinia GR, Karami S (2015) Synthesis of magnetic carboxymethyl chitosan-g-poly(acrylamide)/laponite RD nanocomposites with enhanced dye adsorption capacity. Polym Bull 72:2241–2262

    Article  CAS  Google Scholar 

  7. Liu Y, Zheng Y, Wang A (2010) Enhanced adsorption of methylene blue from aqueous solution by chitosan-g-poly (acrylic acid)/vermiculite hydrogel composites. J Environ Sci 22:486–493

    Article  CAS  Google Scholar 

  8. Mahdavinia GR, Asgari A (2013) Synthesis of kappa-carrageenan-g-poly(acrylamide)/sepiolite nanocomposite hydrogels and adsorption of cationic dye. Polym Bull 70:2451–2470

    Article  CAS  Google Scholar 

  9. Yang H, Wang W, Wang A (2012) A pH-sensitive biopolymer-based superabsorbent nanocomposite from sodium alginate and attapulgite: synthesis, characterization, and swelling behaviors. J Dispers Sci Technol 33:1154–1162

    Article  CAS  Google Scholar 

  10. Liu Y, Wang W, Jin Y, Wang A (2011) Adsorption behavior of methylene blue from aqueous solution by the hydrogel composites based on attapulgite. Sep Sci Technol 46:858–868

    Article  CAS  Google Scholar 

  11. Yang R, Li D, Li A, Yang H (2018) Adsorption properties and mechanisms of palygorskite for removal of various ionic dyes from water. Appl Clay Sci 151:20–28

    Article  CAS  Google Scholar 

  12. Wang L, Zhang J, Wang A (2011) Fast removal of methylene blue from aqueous solution by adsorption onto chitosan-g-poly (acrylic acid)/attapulgite composite. Desalination 266:33–39

    Article  CAS  Google Scholar 

  13. Wang Y, Zeng L, Ren X, Song H, Wang A (2010) Removal of methyl violet from aqueous solutions using poly (acrylic acid-co-acrylamide)/attapulgite composite. J Environ Sci 22:7–14

    Article  CAS  Google Scholar 

  14. Li Q, Zhao Y, Wang L, Aiqin W (2011) Adsorption characteristics of methylene blue onto the N-succinyl-chitosan-g-polyacrylamide/attapulgite composite. Korean J Chem Eng 28:1658–1664

    Article  CAS  Google Scholar 

  15. de Azevedo ACN, Vaz MG, Gomes RF, Pereira AGB, Fajardo AR, Rodrigues FHA (2017) Starch/rice husk ash based superabsorbent composite: high methylene blue removal efficiency. Iran Polym J 26:93–105

    Article  CAS  Google Scholar 

  16. Li K, Li P, Cai J, Xiao S, Yang H, Li A (2016) Efficient adsorption of both methyl orange and chromium from their aqueous mixtures using a quaternary ammonium salt modified chitosan magnetic composite adsorbent. Chemosphere 154:310–318

    Article  CAS  PubMed  Google Scholar 

  17. Bhattacharyya R, Ray SK (2015) Adsorption of industrial dyes by semi-IPN hydrogels of acrylic copolymers and sodium alginate. J Indus Eng Chem 22:92–102

    Article  CAS  Google Scholar 

  18. Hosseinzadeh H, Zoroufi S, Mahdavinia GR (2015) Study on adsorption of cationic dye on novel kappa-carrageenan/poly(vinyl alcohol)/montmorillonite nanocomposite hydrogels. Polym Bull 72:1339–1363

    Article  CAS  Google Scholar 

  19. Song Y, Zhou J, Li Q, Lue A, Zhang L (2009) Solution properties of the acrylamide-modified cellulose polyelectrolytes in aqueous solutions. Carbohydr Res 344:1332–1339

    Article  CAS  PubMed  Google Scholar 

  20. Wu Y, Luo X, Li W, Song R, Li J, Li Y, Li B, Liu S (2016) Green and biodegradable composite films with novel antimicrobial performance based on cellulose. Food Chem 197:250–256

    Article  CAS  PubMed  Google Scholar 

  21. Li R, Du J, Zheng Y, Wen Y, Zhang X, Yang W, Lue A, Zhang L (2017) Ultra-lightweight cellulose foam material: preparation and properties. Cellulose 24:1417–1426

    Article  CAS  Google Scholar 

  22. Bajpai AK, Giri A (2003) Water sorption behaviour of highly swelling (carboxy methylcellulose-g-polyacrylamide) hydrogels and release of potassium nitrate as agrochemical. Carbohydr Polym 53:271–279

    Article  CAS  Google Scholar 

  23. Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Guo X, Xu J, Cheng H, Han CC, Kuga S (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41:9345–9351

    Article  CAS  Google Scholar 

  24. Cai J, Zhang L, Zhou J, Qi H, Chen H, Kondo T, Chen X, Chu B (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825

    Article  CAS  Google Scholar 

  25. Song Y, Zhou J, Zhang L, Wu X (2008) Homogenous modification of cellulose with acrylamide in NaOH/urea aqueous solutions. Carbohydr Polym 73:18–25

    Article  CAS  Google Scholar 

  26. Luo X, Liu S, Zhou J, Zhang L (2009) In situ synthesis of Fe3O4/cellulose microspheres with magnetic-induced protein delivery. J Mater Chem 19:3538–3545

    Article  CAS  Google Scholar 

  27. Chen X, Xiaoxue Song Y Sun (2016) Attapulgite nanofiber-cellulose nanocomposite with core-shell structure for dye adsorption. Int J Polym Sci 2016:1–9

    Google Scholar 

  28. Liu S, Zhang L, Zhou J, Wu R (2008) Structure and properties of cellulose/Fe2O3 nanocomposite fibers spun via an effective pathway. J Phys Chem C 112:4538–4544

    Article  CAS  Google Scholar 

  29. Chang C, Zhang L, Zhou J, Zhang L, Kennedy JF (2010) Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydr Polym 82:122–127

    Article  CAS  Google Scholar 

  30. Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100

    Article  CAS  Google Scholar 

  31. Paulino AT, Guilherme MR, Reis AV, Campese GM, Muniz EC, Nozaki J (2006) Removal of methylene blue dye from an aqueous media using superabsorbent hydrogel supported on modified polysaccharide. J Colloid Interface Sci 301:55–62

    Article  CAS  PubMed  Google Scholar 

  32. Wang W, Wang A (2010) Nanocomposite of carboxymethyl cellulose and attapulgite as a novel pH-sensitive superabsorbent: synthesis, characterization and properties. Carbohydr Polym 82:83–91

    Article  CAS  Google Scholar 

  33. Huang JH, Liu YF, Jin QZ, Wang XG (2007) Spectra study on the influence of drying process on palygorskite structure. Spectrosc Spect Anal 27:408–410

    CAS  Google Scholar 

  34. Lei Z, Yang Q, Wu S, Song X (2009) Reinforcement of polyurethane/epoxy interpenetrating network nanocomposites with an organically modified palygorskite. J Appl Polym Sci 111:3150–3162

    Article  CAS  Google Scholar 

  35. Cheng HL, Feng QH, Liao CA, Liu Y, Wu DB, Wang QG (2016) Removal of methylene blue with hemicellulose/clay hybrid hydrogels. Chin J Polym Sci 34:709–719

    Article  CAS  Google Scholar 

  36. Crini G, Peindy HN (2006) Adsorption of C.I. Basic blue 9 on cyclodextrin-based material containing carboxylic groups. Dyes Pigm 70:204–211

    Article  CAS  Google Scholar 

  37. Song N, Wu XL, Zhong S, Lin H, Chen JR (2015) Biocompatible G-Fe3O4/CA nanocomposites for the removal of methylene blue. J Mol Liq 212:63–69

    Article  CAS  Google Scholar 

  38. Fan L, Luo C, Sun M, Qiu H, Li X (2013) Synthesis of magnetic β-cyclodextrin–chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal. Colloid Surf B Biointerface 103:601–607

    Article  CAS  Google Scholar 

  39. Gad YH (2008) Preparation and characterization of poly(2-acrylamido-2-methylpropane-sulfonic acid)/Chitosan hydrogel using gamma irradiation and its application in wastewater treatment. Radiat Phys Chem 77:1101–1107

    Article  CAS  Google Scholar 

  40. Chen R, Zhang Y, Shen L, Wang X, Chen J, Ma A, Jiang W (2015) Lead(II) and methylene blue removal using a fully biodegradable hydrogel based on starch immobilized humic acid. Chem Eng J 268:348–355

    Article  CAS  Google Scholar 

  41. Guo L, Li G, Liu J, Meng Y, Tang Y (2013) Adsorptive decolorization of methylene blue by crosslinked porous starch. Carbohydr Polym 93:374–379

    Article  CAS  PubMed  Google Scholar 

  42. Al-Futaisi A, Jamrah A, Al-Rawas A, Al-Hanai S (2007) Adsorption capacity and mineralogical and physico-chemical characteristics of Shuwaymiyah palygorskite (Oman). Environ Geol 51:1317–1327

    Article  CAS  Google Scholar 

  43. Auta M, Hameed BH (2014) Chitosan–clay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue. Chem Eng J 237:352–361

    Article  CAS  Google Scholar 

  44. Zhou C, Wu Q, Lei T, Negulescu II (2014) Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels. Chem Eng J 251:17–24

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the financial support provided by Scientific Research Foundation for Doctor of Jinling Institute of Technology (Grant no.jit-b-201415) and Natural Science Foundation for Colleges and Universities of Jiangsu Province (Grant no.12KJD150006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Chen, C. & Zhu, J. Facile preparation of cellulose–attapulgite nanocomposite hydrogel for dye adsorption. Iran Polym J 28, 347–359 (2019). https://doi.org/10.1007/s13726-019-00703-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-019-00703-9

Keywords

Navigation