Skip to main content
Log in

A novel heteropolyacid-doped carbon nanotubes/Nafion nanocomposite membrane for high performance proton-exchange methanol fuel cell applications

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

A novel proton-exchange polymer composite membrane was synthesized using Nafion®, tetraethoxysilane-modified carbon nanotubes (CNTs) and phosphotungstic acid-modified carbon nanotubes with the aim of using direct methanol fuel cells (DMFCs). Physicochemical properties of the modified CNTs and fabricated composite membranes were investigated by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, water uptake, thermogravimetric analysis, ion exchange capacity, proton conductivity and methanol permeability tests. It was demonstrated that chemical surface modification of CNTs and introduction of the phosphotungstic acid (PWA) groups effectively improved the performance of DMFC. It was found that the presence of PWA groups on the surface of CNTs led to the formation of strong electrostatic interactions between the PWA groups and clusters of sulfonic acid in Nafion® macromolecules. Hence, the incorporation of inorganic phosphotungstic super-acid-doped silicon oxide-covered carbon nanotubes (CNT@SiO2-PWA) into Nafion® matrices enhanced the proton conductivity of the prepared membranes. Moreover, the methanol permeability was reduced to 2.63 × 10−7 cm2 s−1 in comparison with the recast Nafion® membrane (2.25 × 10−6 cm2 s−1). Enhancing the proton conductivity and reducing the methanol permeability, the selectivity of the prepared nanocomposite membranes was enhanced to a greater value of 330,700 S s cm−3 as compared to the value of 38,222 S s cm−3 for recast Nafion®.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hacquard A (2005) Improving and understanding direct methanol fuel cell (DMFC) performance. MS Thesis Worcester Polytechnic Institute

  2. Awang N, Ismail AF, Jaafar J, Matsuura T, Junoh H, Othman MHD, Rahman MA (2015) Functionalization of polymeric materials as a high performance membrane for direct methanol fuel cell: a review. React Func Polym 86:248–258

    Article  CAS  Google Scholar 

  3. Liu L, Chen W, Li Y (2016) An overview of the proton conductivity of nafion membranes through a statistical analysis. J Memb Sci 504:1–9

    Article  CAS  Google Scholar 

  4. Mauritz KA, Moore RB (2004) State of understanding of Nafion. Chem Rev 104:4535–4586

    Article  CAS  Google Scholar 

  5. Schmidt-Rohr K, Chen Q (2008) Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nat Mater 7:75–83

    Article  CAS  Google Scholar 

  6. Yin Y, Li Z, Yang X, Cao L, Wang C, Zhang B, Wu H, Jiang Z (2016) Enhanced proton conductivity of Nafion composite membrane by incorporating phosphoric acid-loaded covalent organic framework. J Power Sources 332:265–273

    Article  CAS  Google Scholar 

  7. Hasani-Sadrabadi MM, Emami SH, Ghaffarian R, Moaddel H (2008) Nanocomposite membranes made from sulfonated poly (ether ether ketone) and montmorillonite clay for fuel cell applications. Energy Fuels 22:2539–2542

    Article  CAS  Google Scholar 

  8. Hasani-Sadrabadi MM, Mokarram N, Azami M, Dashtimoghadam E, Majedi FS, Jacob KI (2011) Preparation and characterization of nanocomposite polyelectrolyte membranes based on Nafion® ionomer and nanocrystalline hydroxyapatite. Polymer 52:1286–1296

    Article  CAS  Google Scholar 

  9. Parthiban V, Akula S, Sahu AK (2017) Surfactant templated nanoporous carbon-Nafion hybrid membranes for direct methanol fuel cells with reduced methanol crossover. J Membr Sci 541:127–136

    Article  CAS  Google Scholar 

  10. Bose S, Kuila T, Nguyen TXH, Kim NH, Lau KT, Lee JH (2011) Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog Polym Sci 36:813–843

    Article  CAS  Google Scholar 

  11. Hasanabadi N, Ghaffarian SR, Hasani-Sadrabadi MM (2013) Nafion-based magnetically aligned nanocomposite proton exchange membranes for direct methanol fuel cells. Solid State Ionics 232:58–67

    Article  CAS  Google Scholar 

  12. Li J, Park JK, Moore RB, Madsen LA (2011) Linear coupling of alignment with transport in a polymer electrolyte membrane. Nat Mater 10:507–511

    Article  CAS  Google Scholar 

  13. Alvarez A, Guzman C, Carbone A, Sacca A, Gatto I, Passalacqua E, Nava R, Ornelas R, Ledesma-Garcia J, Arriaga L (2011) Influence of silica morphology in composite Nafion membranes properties. Int JHydrogen Energy 36:14725–14733

    Article  CAS  Google Scholar 

  14. Hu D, Xing Y, Chen M, Gu B, Sun B, Li Q (2017) Ultrastrong and excellent dynamic mechanical properties of carbon nanotube composites. Compos Sci Technol 141:137–144

    Article  CAS  Google Scholar 

  15. Adamska M, Narkiewicz U (2017) Fluorination of carbon nanotubes—a review. J Fluorine Chem 200:179–189

    Article  CAS  Google Scholar 

  16. Asgari MS, Nikazar M, Molla-abbasi P, Hasani-Sadrabadi MM (2013) Nafion®/histidine functionalized carbon nanotube: high-performance fuel cell membranes. Int J Hydrog Energy 38:5894–5902

    Article  CAS  Google Scholar 

  17. Lee JW, Khan SB, Akhtar K, Kim KI, Yoo TW, Seo KW, Han H, Asiri A (2012) Fabrication of composite membrane based on silicotungstic heteropolyacid doped polybenzimidazole for high temperature PEMFC. Int J Electrochem Sci 7:6276–6288

    CAS  Google Scholar 

  18. Kozhevnikov I (2009) Sustainable heterogeneous acid catalysis by heteropoly acids, vol II: handbook of green chemistry, heterogeneous catalysis. Wiley-VCH, Weinheim

  19. Huang T, Tian N, Wu Q, Yan Y, Yan W (2015) Synthesis, crystal structure and conductive mechanism of solid high-proton conductor tungstovanadosilicic heteropoly acid. Mater Chem Phys 165:34–38

    Article  CAS  Google Scholar 

  20. Jalani NH, Dunn K, Datta R (2005) Synthesis and characterization of Nafion®-MO2 (M = Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells. Electrochim Acta 51:553–560

    Article  CAS  Google Scholar 

  21. Sakamoto M, Nohara S, Miyatake K, Uchida M, Watanabe M, Uchida H (2014) Effects of incorporation of SiO2 nanoparticles into sulfonated polyimide electrolyte membranes on fuel cell performance under low humidity conditions. Electrochim Acta 137:213–218

    Article  CAS  Google Scholar 

  22. Staiti P, Arico A, Baglio V, Lufrano F, Passalacqua E, Antonucci V (2001) Hybrid Nafion–silica membranes doped with heteropolyacids for application in direct methanol fuel cells. Solid State Ionics 145:101–107

    Article  CAS  Google Scholar 

  23. Rosca ID, Watari F, Uo M, Akasaka T (2005) Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 43:3124–3131

    Article  CAS  Google Scholar 

  24. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  25. Rafiee E, Eavani S, Malaekeh-Nikouei B (2012) 12-Tungstophosphoric acid immobilized on γ-Fe 2 O 3@ SiO2core–shell nanoparticles: an effective solid acid catalyst for the synthesis of Indole derivatives in water. Chem Lett 41:438–440

    Article  CAS  Google Scholar 

  26. Li H, Ha CS, Kim I (2009) Fabrication of carbon nanotube/SiO2 and carbon nanotube/SiO2/Ag nanoparticles hybrids by using plasma treatment. Nanoscale Res Lett 4:1384

    Article  CAS  Google Scholar 

  27. Vinayan B, Nagar R, Raman V, Rajalakshmi N, Dhathathreyan K, Ramaprabhu S (2012) Synthesis of graphene-multiwalled carbon nanotubes hybrid nanostructure by strengthened electrostatic interaction and its lithium ion battery application. J Mater Chem 22:9949–9956

    Article  CAS  Google Scholar 

  28. Bardin BB, Bordawekar SV, Neurock M, Davis RJ (1998) Acidity of Keggin-type heteropolycompounds evaluated by catalytic probe reactions, sorption microcalorimetry, and density functional quantum chemical calculations. J Phys Chem B 102:10817–10825

    Article  CAS  Google Scholar 

  29. Aparicio M, Castro Y, Durán A (2005) Synthesis and characterisation of proton conducting styrene-co-methacrylate–silica sol–gel membranes containing tungstophosphoric acid. Solid State Ionics 176:333–340

    Article  CAS  Google Scholar 

  30. Rocchiccioli-Deltcheff C, Fournier M, Franck R, Thouvenot R (1983) Vibrational investigations of polyoxometalates. 2. Evidence for anion-anion interactions in molybdenum (VI) and tungsten (VI) compounds related to the Keggin structure. Inorg Chem 22:207–216

    Article  CAS  Google Scholar 

  31. Watson JM, Zhang GS, Payne PA (1992) The diffusion mechanism in silicone rubber. J Memb Sci 73:55–71

    Article  CAS  Google Scholar 

  32. Thomassin JM, Kollar J, Caldarella G, Germain A, Jérôme R, Detrembleur C (2007) Beneficial effect of carbon nanotubes on the performances of Nafion membranes in fuel cell applications. J Membr Sci 303:252–257

    Article  CAS  Google Scholar 

  33. Molla-Abbasi P, Asgari MS, Hassani Sadrabadi MM (2017) Improving the performance of Nafion®-based fuel cell membranes by introducing histidine functionalized carbon nanotubes. J Macromol Sci B 56:234–244

    Article  CAS  Google Scholar 

  34. Rodgers MP, Shi Z, Holdcroft S (2008) Transport properties of composite membranes containing silicon dioxide and Nafion®. J Membr Sci 325:346–356

    Article  CAS  Google Scholar 

  35. Choi BG, Hong J, Park YC, Jung DH, Hong WH, Hammond PT, Park H (2011) Innovative polymer nanocomposite electrolytes: nanoscale manipulation of ion channels by functionalized graphenes. ACS Nano 5:5167–5174

    Article  CAS  Google Scholar 

  36. Zhong S, Cui X, Dou S, Luo Y, Cui W, Zhao S, Zhu H, Liu W (2010) Silicon-containing sulfonated polystyrene/acrylate–phosphotungstic acid hybrid membranes with high methanol barrier and good proton conductivity. Solid State Ionics 181:1499–1504

    Article  CAS  Google Scholar 

  37. Qiao J, Hamaya T, Okada T (2005) New highly proton-conducting membrane poly (vinylpyrrolidone)(PVP) modified poly (vinyl alcohol)/2-acrylamido-2-methyl-1-propanesulfonic acid (PVA–PAMPS) for low temperature direct methanol fuel cells (DMFCs). Polymer 46:10809–10816

    Article  CAS  Google Scholar 

  38. Choi P, Jalani NH, Datta R (2005) Thermodynamics and proton transport in Nafion II. proton diffusion mechanisms and conductivity. J Electrochem Soc 152:E123–E130

    Article  CAS  Google Scholar 

  39. Hasani-Sadrabadi MM, Dashtimoghadam E, Majedi FS, Moaddel H, Bertsch A, Renaud P (2013) Superacid-doped polybenzimidazole-decorated carbon nanotubes: a novel high-performance proton exchange nanocomposite membrane. Nanoscale 5:11710–11717

    Article  CAS  Google Scholar 

  40. Sung KA, Oh KH, Kim WK, Choo MJ, Nam KW, Park JK (2011) Proton exchange membrane using imidazole-functionalized silica to enhance proton conductivity at lower humidity. Electrochem Solid State Lett 14:B114–B116

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Payam Molla-Abbasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molla-Abbasi, P., Janghorban, K. & Asgari, M.S. A novel heteropolyacid-doped carbon nanotubes/Nafion nanocomposite membrane for high performance proton-exchange methanol fuel cell applications. Iran Polym J 27, 77–86 (2018). https://doi.org/10.1007/s13726-017-0587-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-017-0587-0

Keywords

Navigation