Skip to main content
Log in

ASA/graphite/carbon black composites with improved EMI SE, conductivity and heat resistance properties

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Composites, comprised of acrylonitrile styrene acrylate copolymer (ASA)/graphite (GR) with high electromagnetic interference shielding effectiveness (EMI SE), were fabricated by the introduction of carbon black (CB). The effects of CB on properties such as EMI SE, morphology, heat resistance, rheological and mechanical performance of the composites were characterized using a scanning electron microscope (SEM), rotational rheometer, electromagnetic shielding measuring instruments. The graphite and carbon black exhibited positive synergistic action, which promoted the complete formation of conductive networks in ASA matrix. The EMI SE and electrical conductivity of the ASA/GR/CB composites increased with higher CB loadings. In the frequency range of 30–3000 MHz, the maximum EMI SE of ASA composites with 50 % fillers reached 40 dB, but with 40 % fillers this property reached its maximum value of 50 dB. The flexural strength of ASA/GR/CB composites started to decline as CB loading exceeded 5 %. The heat resistance of the composites was improved due to the addition of CB. In this respect, the vicar softening temperature (VST) of the composites with 40 % fillers increased from 115.1 to 132.7 °C, and the VST of the composites with 50 % fillers was elevated from 125.4 to 138.9 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Faisal M, Khasim S (2013) Polyaniline–antimony oxide composites for effective broadband EMI shielding. Iran Polym J 22:473–480

    Article  CAS  Google Scholar 

  2. Jung WK, Ahn SH, Won MS (2006) Effect of nanoparticles and ion implantation on the electromagnetic shielding of glass–epoxy composites. J Compos Mater 40:175–188

    Article  CAS  Google Scholar 

  3. Reena VL, Sudha JD, Ramakrishnan R (2013) Development of electromagnetic interference shielding materials from the composite of nanostructured polyaniline–polyhydroxy iron–clay and polycarbonate. J Appl Polym Sci 128:1756–1763

    CAS  Google Scholar 

  4. Gong C, Duan Y, Tian J, Wu Z, Zhang Z (2008) Preparation of fine Ni particles and their shielding effectiveness for electromagnetic interference. J Appl Polym Sci 110:569–577

    Article  CAS  Google Scholar 

  5. Morgan D, Peregrinus P (1995) A Handbook of EMC testing and measurement. Institution of Electrical Engineers (IEE), London

    Google Scholar 

  6. Huang CL, Wang C (2011) Rheological and conductive percolation laws for syndiotactic polystyrene composites filled with carbon nanocapsules and carbon nanotubes. Carbon 49:2334–2344

    Article  CAS  Google Scholar 

  7. Qiao YS, Shen LZ, Dou T, Hu M (2011) Polymerization and characterization of high conductivity and good adhesion polypyrrole films for electromagnetic interference shielding. Chin J Polym Sci 28:923–930

    Article  Google Scholar 

  8. Song JB, Mighri F, Ajji A, Lu CH (2012) Polyvinylidene fluoride/poly(ethylene terephthalate) conductive composites for proton exchange membrane fuel cell bipolar plates: crystallization, structure, and through-plane electrical resistivity. Polym Eng Sci 52:2552–2558

    Article  CAS  Google Scholar 

  9. Duan J, Shao S, Li Y, Wang L, Jiang P, Liu B (2012) Polylactide/graphite nanosheets/MWCNTs nanocomposites with enhanced mechanical, thermal and electrical properties. Iran Polym J 21:109–120

    Article  CAS  Google Scholar 

  10. Song JB, Zhang WB, Yang WB, Xu JF, Lai JJ (2014) Rheological properties, morphology, mechanical properties, electrical resistivity and EMI SE of cyclic butylene terephthalate/graphite/carbon black composites. J Polym Res 21:556–663

    Article  Google Scholar 

  11. Ren D, Zheng S, Huang S, Liu Z, Yang M (2013) Effect of the carbon black structure on the stability and efficiency of the conductive network in polyethylene composites. J Appl Polym Sci 129:3382–3389

    Article  CAS  Google Scholar 

  12. Tian H, Tian M, Zou H, Dang Z, Zhang L (2010) Special electrical conductivity of carbon black-filled two-phased thermoplastic vulcanizates. J Appl Polym Sci 117:691–699

    Article  CAS  Google Scholar 

  13. Al-Osaimi J, Al-Hosiny N, Abdallah S, Badawi A (2014) Characterization of optical, thermal and electrical properties of SWCNTs/PMMA nanocomposite films. Iran Polym J 23:437–443

    Article  CAS  Google Scholar 

  14. Saeed K, Park S-Y (2011) Multiwalled-carbon nanotubes/poly(butylene terephthalate) nanofibres: morphological, mechanical and thermal properties. Iran Polym J 20:795–802

    CAS  Google Scholar 

  15. Wu X, Wang Y, Xie L, Yu J, Liu F, Jiang P (2013) Thermal and electrical properties of epoxy composites at high alumina loadings and various temperatures. Iran Polym J 22:61–73

    Article  CAS  Google Scholar 

  16. Mosleh Y, Ebrahimi NG, Mahdavian A, Ashjari M (2014) TPU/PCL/nanomagnetite ternary shape memory composites: studies on their thermal, dynamic-mechanical, rheological and electrical properties. Iran Polym J 23:137–145

    Article  CAS  Google Scholar 

  17. Song JB, Yuan QP, Zhang HL, Huang B, Fu F (2015) Elevated conductivity and electromagnetic interference shielding effectiveness of PVDF/PETG/carbon fiber composites through incorporating carbon black. J Polym Res 22:158–165

    Article  Google Scholar 

  18. Song JB, Yang WB, Fu F, Zhang YH (2014) The effect of graphite on the water uptake, mechanical properties, morphology, and EMI shielding effectiveness of HDPE/bamboo flour composites. Bioresources 9:3955–3967

    Google Scholar 

  19. Valentini M, Piana F, Pionteck J, Lamastra FR, Nanni F (2015) Electromagnetic properties and performance of exfoliated graphite (EG)-thermoplastic polyurethane (TPU) nanocomposites at microwaves. Compos Sci Technol 114:26–33

    Article  CAS  Google Scholar 

  20. Frackowiak S, Ludwiczak J, Leluk K, Orzechowski K, Kozlowski M (2015) Foamed poly(lactic acid) composites with carbonaceous fillers for electromagnetic shielding. Mater Design 65:749–756

    Article  CAS  Google Scholar 

  21. Al-Saleh M, Sundararaj U (2013) X-band EMI shielding mechanisms and shielding effectiveness of high structure carbon black/polypropylene composites. J Phys D Appl Phys 46:035304

    Article  Google Scholar 

  22. Al-Hartomy O, Al-Salamy F, Al-Ghamdi A, Fatah MA, Dishovsky N, El-Tantawy F (2011) Influence of graphite nanosheets on the structure and properties of PVC-based nanocomposites. J Appl Polym Sci 120:3628–3634

    Article  CAS  Google Scholar 

  23. Madani M (2010) Conducting carbon black filled NR/IIR blend vulcanizates: assessment of the dependence of physical and mechanical properties and electromagnetic interference shielding on variation of filler loading. J Polym Res 17:53–62

    Article  CAS  Google Scholar 

  24. Wang H, Zhu D, Zhou W, Luo F (2015) Electromagnetic and microwave absorbing properties of polyimide nanocomposites at elevated temperature. J Alloy Compd 648:313–319

    Article  CAS  Google Scholar 

  25. Du FM, Scogna RC, Zhou W (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37:9048–9055

    Article  CAS  Google Scholar 

  26. Al-Saleh MH, Saadeh WH, Sundararaj U (2013) EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon 60:146–156

    Article  CAS  Google Scholar 

  27. Villacorta BS, Ogale AA, Hubing TH (2013) Effect of heat treatment of carbon nanofibers on the electromagnetic shielding effectiveness of linear low density polyethylene nanocomposites. Polym Eng Sci 53:417–423

    Article  CAS  Google Scholar 

  28. Chen ZP, Xu C, Ma C (2013) Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater 25:1296–1300

    Article  CAS  Google Scholar 

  29. Jin X, Ni QQ, Natsuki T (2011) Composites of multi-walled carbon nanotubes and shape memory polyurethane for electromagnetic interference shielding. J Compos Mater 45:2547–2554

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This article was supported by the Postdoctoral Science Foundation of China (No. 2014M560138); Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (No. 20141685), Natural Science Foundation of Fujian Province of China (No. 2014J01068), Research and Demonstration of High Value Processing Technology and Equipment of Agricultural Products in Fujian Province (2014NZ0003), Key Laboratory of Wood Science and Technology, Zhejiang Province (No. 2014lygcy015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianbin Song or Xueshen Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Yang, W., Liu, X. et al. ASA/graphite/carbon black composites with improved EMI SE, conductivity and heat resistance properties. Iran Polym J 25, 111–118 (2016). https://doi.org/10.1007/s13726-015-0404-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-015-0404-6

Keywords

Navigation