Skip to main content
Log in

Synergistic effects of nano-scale polybutadiene rubber powder (PBRP) and nanoclay on the structure, dynamic mechanical and thermal properties of polypropylene (PP)

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Nano-scale polybutadiene rubber powder (PBRP) was prepared by spray drying of irradiated rubber lattices vulcanized by 60Co radiation. Then, polypropylene (PP)-based nanocomposite samples using either PBRP or organoclay (OC) or both of them were prepared by melt mixing method. The prepared samples were characterized by performing mechanical (tensile properties and impact resistance), dynamic mechanical (DMTA), X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) tests. TEM micrographs verified a fine dispersion of the PBRP in the polymeric matrix which resulted to an enhancement in impact resistance of PP in spite of reduction in tan δ peak in DMTA test. By the way, the XRD and TEM tests showed that by the addition of PBRP, the interlayer space of the OC was increased and caused improvement in tensile properties of the PP/OC nanocomposite. Furthermore, mechanical studies revealed the synergistic effect of use of OC and PBRP together, thus, combination of OC with 5 wt% PBRP not only increased the toughness of the PP compared to the use of either of them, but also improved the tensile strength and elongation-at-break values. The DSC tests showed that the PBRP acted as a nucleating agent and promoted the crystallinity, melting temperature (T m ) and crystallization temperature (T c) of the PP in nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Prut EV, Erina NA, Karger-Kocsis J, Medintseva TI (2008) Effects of blend composition and dynamic vulcanization on the morphology and dynamic viscoelastic properties of PP/EPDM blends. J Appl Polym Sci 109:1212–1220

    Article  CAS  Google Scholar 

  2. Ezzati P, Ghasemi I, Karrabi M, Azizi H (2008) Rheological behaviour of PP/EPDM blend: the effect of compatibilization. Iran Polym J 17:669–679

    CAS  Google Scholar 

  3. Zhao Y, Huang HX, Chen YK, Wu XJ (2010) SC–CO2-assisted rubber dispersion and dynamic vulcanization in blending of PP/EPDM thermoplastic olefin. J Mater Sci 45:4054–4057

    Article  CAS  Google Scholar 

  4. Yokoyama Y, Ricco T (1998) Toughening of polypropylene by different elastomeric systems. Polymer 39:3675–3681

    Article  CAS  Google Scholar 

  5. Naderi G, Razavi-Nouri M, Mehrabzadeh M, Bakhshandeh GR (1999) Studies on dynamic vulcanization of PP/NBR thermoplastic elastomer blends. Iran Polym J 8:37–42

    CAS  Google Scholar 

  6. Abd El-Hakim AA, Badran AS, Essawy HA (2004) The effect of surface treatment of bentonite on the mechanical properties of polypropylene–bentonite composites. Polym Plastic Technol 43:555–569

    Article  CAS  Google Scholar 

  7. Abd El-Hakim AA, Badran AS, Essawy HA (2004) The effect of surface treatment of Barium sulphate on the mechanical properties of polypropylene–barium sulphate composites. J Elastom Plast 36:289–306

    Article  CAS  Google Scholar 

  8. Costantino A, Pettarin V, Viana J, Pontes A, Pouzada A, Frontini P (2013) Polypropylene/clay nanocomposites produced by shear controlled orientation in injection moulding: deformation and fracture properties. J Mech Eng Sci 59:697–704

    Article  Google Scholar 

  9. Li Y, Wei GX, Sue HJ (2002) Morphology and toughening mechanisms in clay-modified styrene–butadiene–styrene rubber-toughened polypropylene. J Mater Sci 37:2447–2459

    Article  CAS  Google Scholar 

  10. Kooshki MM, Jalali-Arani A (2009) Preparation, characterization and properties of polymeric nanocomposites based on natural rubber and polybutadiene rubber blend. E-Polymers 9:1570–1579

    Article  Google Scholar 

  11. Monfared A, Jalali-Arani A, Mohammadi N (2014) The effect of epoxidized natural rubber and two kinds of organoclay upon molecular interaction, structure and mechanical properties of (styrene–butadiene rubber/acrylonitrile–butadiene rubber/organoclay) nanocomposites. J Macromol Sci, Phys 53:918–930

    Article  CAS  Google Scholar 

  12. Nematollahi M, Jalali-Arani A, Golzar K (2014) Organoclay maleated natural rubber nanocomposite. Prediction of abrasion and mechanical properties by artificial neural network and adaptive neuro-fuzzy inference. Appl Clay Sci 97:188–199

    Google Scholar 

  13. Motamedi P, Bagheri R (2010) Investigation of the nanostructure and mechanical properties of polypropylene/polyamide 6/layered silicate ternary nanocomposites. Mater Design 31:1776–1784

    Article  CAS  Google Scholar 

  14. Monfared A, Jalali-Arani A (2015) Morphology and rheology of (styrene–butadiene rubber/acrylonitrile–butadiene rubber) blends filled with organoclay: the effect of nanoparticle localization. Appl Clay Sci 108:1–11

    Article  CAS  Google Scholar 

  15. Long Y, Shanks RA (1996) PP–elastomer–filler hybrids. I. Processing, microstructure, and mechanical properties. J Appl Polym Sci 61:1877–1885

    Article  CAS  Google Scholar 

  16. Ku KH, Kim SC (2010) Nonisothermal crystallization behavior of PP/rubber/clay nanocomposite. Macromol Res 18:482–488

    Article  CAS  Google Scholar 

  17. Wei W, Zhongde X (2000) Study on the reinforced and toughened PP blends with the rigid nano-particles and the elastic rubber-particles. Acta Polym Sin 1:99–104

    Google Scholar 

  18. Ma CG, Mai YL, Rong MZ, Ruan WH, Zhang MQ (2007) Phase structure and mechanical properties of ternary polypropylene/elastomer/nano-CaCO3 composites. Compos Sci Technol 67:2997–3005

    Article  CAS  Google Scholar 

  19. Li D, Xia H, Peng J, Zhai M, Wei G, Li J, Qiao J (2007) Radiation preparation of nano-powdered styrene–butadiene rubber (SBR) and its toughening effect for polystyrene and high-impact polystyrene. Radiat Phys Chem 76:1732–1735

    Article  CAS  Google Scholar 

  20. Zhao Q, Ding Y, Yang B, Ning N, Fu Q (2013) Highly efficient toughening effect of ultrafine full-vulcanized powdered rubber on poly (lactic acid)(PLA). Polym Test 32:299–305

    Article  CAS  Google Scholar 

  21. Rezaei Abadchi M, Jalali-Arani A (2014) The use of gamma irradiation in preparation of polybutadiene rubber nanopowder; Its effect on particle size, morphology and crosslink structure of the powder. Nucl Instr Meth Phys Res A 320:1–5

    Article  CAS  Google Scholar 

  22. Dennis HR, Hunter DL, Chang D, Kim S, White JL, Cho JW, Paul DR (2001) Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites. Polymer 42:9513–9522

    Article  CAS  Google Scholar 

  23. Alipour A, Naderi G, Bakhshandeh GR, Vali H, Shokoohi S (2011) Elastomer nanocomposites based on NR/EPDM/Organoclay: morphology and properties. Int Polym Proc 26:48–55

    Article  CAS  Google Scholar 

  24. Monticelli O, Musina Z, Russo S, Bals S (2007) On the use of TEM in the characterization of nanocomposites. Mater Lett 61:3446–3450

    Article  CAS  Google Scholar 

  25. Praveen S, Chattopadhyay PK, Albert P, Dalvi VG, Chakraborty BC, Chattopadhyay S (2009) Synergistic effect of carbon black and nanoclay fillers in styrene butadiene rubber matrix: development of dual structure. Compos Part A-Appl S 40:309–316

    Article  Google Scholar 

  26. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng 28:1–63

    Article  Google Scholar 

  27. Pavlidou S, Papaspyrides CD (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33:1119–1198

    Article  CAS  Google Scholar 

  28. Rajasekar R, Pal K, Heinrich G, Das A, Das CK (2009) Development of nitrile butadiene rubber–nanoclay composites with epoxidized natural rubber as compatibilizer. Mater Design 30:3839–3845

    Article  CAS  Google Scholar 

  29. Das A, Wang DY, Stöckelhuber KW, Jurk R, Fritzsche J, Klüppel M, Heinrich G (2010) Rubber–clay nanocomposites: some recent results. Adv Polym Sci 239:85–166

    Article  Google Scholar 

  30. Jain S, Goossens JGP, Van Duin M, Lemstra P (2005) Effect of in situ prepared silica nano-particles on non-isothermal crystallization of polypropylene. Polymer 46:8805–8818

    Article  CAS  Google Scholar 

  31. Wunderlich B (1990) Thermal analysis TX Z. Academic Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azam Jalali-Arani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei Abadchi, M., Jalali-Arani, A. Synergistic effects of nano-scale polybutadiene rubber powder (PBRP) and nanoclay on the structure, dynamic mechanical and thermal properties of polypropylene (PP). Iran Polym J 24, 805–813 (2015). https://doi.org/10.1007/s13726-015-0372-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-015-0372-x

Keywords

Navigation