Skip to main content
Log in

Weight Management in Youth with Type 1 Diabetes and Obesity: Challenges and Possible Solutions

  • Childhood Obesity (A Kelly and C Fox, Section Editor)
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review highlights challenges associated with weight management in children and adolescents with type 1 diabetes (T1D). Our purpose is to propose potential solutions to improve weight outcomes in youth with T1D.

Recent Findings

A common barrier to weight management in T1D is reluctance to engage in exercise for fear of hypoglycemia. Healthcare practitioners generally provide limited guidance for insulin dosing and carbohydrate modifications to maintain stable glycemia during exercise. Adherence to dietary guidelines is associated with improved glycemia; however, youth struggle to meet recommendations. When psychosocial factors are addressed in combination with glucose trends, this often leads to successful T1D management. Newer medications also hold promise to potentially aid in glycemia and weight management, but further research is necessary.

Summary

Properly addressing physical activity, nutrition, pharmacotherapy, and psychosocial factors while emphasizing weight management may reduce the likelihood of obesity development and its perpetuation in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Minges KE, Whittemore R, Grey M. Overweight and obesity in youth with type 1 diabetes. Annu Rev Nurs Res. 2013;31:47–69. https://doi.org/10.1891/0739-6686.31.47.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Minges KE, Whittemore R, Weinzimer SA, Irwin ML, Redeker NS, Grey M. Correlates of overweight and obesity in 5529 adolescents with type 1 diabetes: the T1D exchange clinic registry. Diabetes Res Clin Pract. 2017;126:68–78. https://doi.org/10.1016/j.diabres.2017.01.012.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ogden CL, Carroll MD, Lawman HG, Fryar CD, Kruszon-Moran D, Kit BK, et al. Trends in obesity prevalence among children and adolescents in the United States, 1988-1994 through 2013-2014. JAMA. 2016;315:2292–9. https://doi.org/10.1001/jama.2016.6361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu LL, Lawrence JM, Davis C, Liese AD, Pettitt DJ, Pihoker C, et al. Prevalence of overweight and obesity in youth with diabetes in USA: the search for diabetes in youth study. Pediatr Diabetes. 2010;11:4–11.

    Article  PubMed  Google Scholar 

  5. Matheus AS, Tannus LR, Cobas RA, Palma CC, Negrato CA, Gomes MB. Impact of diabetes on cardiovascular disease: an update. Int J Hypertens. 2013;2013:653789. https://doi.org/10.1155/2013/653789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Keeley TJH, Fox KR. The impact of physical activity and fitness on academic achievement and cognitive performance in children. Int J Sport Exerc Psychol. 1999;2:198–214.

    Article  Google Scholar 

  7. Kemper HC, Twisk JW, Koppes LL, Wv M, Post GB. A 15-year physical activity pattern is positively related to aerobic fitness in young males and females (13-27 years). Eur J Appl Physiol. 2001;84:395–402.

    Article  CAS  PubMed  Google Scholar 

  8. Burrows M. Exercise and bone mineral accrual in children and adolescents. J Sports Sci Med. 2007;6:305–12.

    PubMed  PubMed Central  Google Scholar 

  9. Baran J, Weres A, Czenczek-Lewandowska E, Wyszynska J, Luszczki E, Deren K, et al. Blood lipid profile and body composition in a pediatric population with different levels of physical activity. Lipids Health Dis. 2018;17:171. https://doi.org/10.1186/s12944-018-0817-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Quirk H, Blake H, Tennyson R, Randell TL, Glazebrook C. Physical activity interventions in children and young people with type 1 diabetes mellitus: a systematic review with meta-analysis. Diabet Med. 2014;31:1163–73. https://doi.org/10.1111/dme.12531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. MacMillan F, Kirk A, Mutrie N, Matthews L, Robertson K, Saunders DH. A systematic review of physical activity and sedentary behavior intervention studies in youth with type 1 diabetes: study characteristics, intervention design, and efficacy. Pediatr Diabetes. 2014;15:175–89. https://doi.org/10.1111/pedi.12060.

    Article  PubMed  Google Scholar 

  12. Pivovarov JA, Taplin CE, Riddell MC. Current perspectives on physical activity and exercise for youth with diabetes. Pediatr Diabetes. 2015;16:242–55. https://doi.org/10.1111/pedi.12272.

    Article  CAS  PubMed  Google Scholar 

  13. Andersen LB, Riddoch C, Kriemler S, Hills AP. Physical activity and cardiovascular risk factors in children. Br J Sports Med. 2011;45:871–6. https://doi.org/10.1136/bjsports-2011-090333.

    Article  PubMed  Google Scholar 

  14. Tarp J, Child A, White T, Westgate K, Bugge A, Grontved A, et al. Physical activity intensity, bout-duration, and cardiometabolic risk markers in children and adolescents. Int J Obes. 2018;42:1639–50. https://doi.org/10.1038/s41366-018-0152-8.

    Article  Google Scholar 

  15. Herrmann SD, Angadi SS. Children’s physical activity and sedentary time and cardiometabolic risk factors. Clin J Sport Med. 2013;23:408–9. https://doi.org/10.1097/01.jsm.0000433154.58936.a8.

    Article  PubMed  Google Scholar 

  16. Fritz J, Coster ME, Nilsson JA, Rosengren BE, Dencker M, Karlsson MK. The associations of physical activity with fracture risk: a 7-year prospective controlled intervention study in 3534 children. Osteoporos Int. 2016;27:915–22. https://doi.org/10.1007/s00198-015-3311-y.

    Article  CAS  PubMed  Google Scholar 

  17. Detter F, Nilsson JA, Karlsson C, Dencker M, Rosengren BE, Karlsson MK. A 3-year school-based exercise intervention improves muscle strength - a prospective controlled population-based study in 223 children. BMC Musculoskelet Disord. 2014;15:353. https://doi.org/10.1186/1471-2474-15-353.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fritz J, Coster ME, Stenevi-Lundgren S, Nilsson JA, Dencker M, Rosengren BE, et al. A 5-year exercise program in children improves muscle strength without affecting fracture risk. Eur J Appl Physiol. 2016;116:707–15. https://doi.org/10.1007/s00421-015-3310-x.

    Article  PubMed  Google Scholar 

  19. Alvarez-Bueno C, Pesce C, Cavero-Redondo I, Sanchez-Lopez M, Martinez-Hortelano JA, Martinez-Vizcaino V. The effect of physical activity interventions on children’s cognition and metacognition: a systematic review and meta-analysis. J Am Acad Child Adolesc Psychiatry. 2017;56:729–38. https://doi.org/10.1016/j.jaac.2017.06.012.

    Article  PubMed  Google Scholar 

  20. Eime RM, Young JA, Harvey JT, Charity MJ, Payne WR. A systematic review of the psychological and social benefits of participation in sport for children and adolescents: informing development of a conceptual model of health through sport. Int J Behav Nutr Phys Act. 2013;10:98. https://doi.org/10.1186/1479-5868-10-98.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hagan JF, Shaw JS, PM D. Bright futures: guidelines for health supervision of infants, children, and adolescents. 4th ed: American Academy of Pediatrics; 2017.

  22. Zhang Y, Zhang H, Li P. Cardiovascular risk factors in children with type 1 diabetes mellitus. J Pediatr Endocrinol Metab. 2019;32:699–705. https://doi.org/10.1515/jpem-2018-0382.

    Article  CAS  PubMed  Google Scholar 

  23. Gunczler P, Lanes R, Paz-Martinez V, Martins R, Esaa S, Colmenares V, et al. Decreased lumbar spine bone mass and low bone turnover in children and adolescents with insulin dependent diabetes mellitus followed longitudinally. J Pediatr Endocrinol Metab. 1998;11:413–9. https://doi.org/10.1515/jpem.1998.11.3.413.

    Article  CAS  PubMed  Google Scholar 

  24. Pan H, Wu N, Yang T, He W. Association between bone mineral density and type 1 diabetes mellitus: a meta-analysis of cross-sectional studies. Diabetes Metab Res Rev. 2014;30:531–42. https://doi.org/10.1002/dmrr.2508.

    Article  PubMed  Google Scholar 

  25. Buchberger B, Huppertz H, Krabbe L, Lux B, Mattivi JT, Siafarikas A. Symptoms of depression and anxiety in youth with type 1 diabetes: a systematic review and meta-analysis. Psychoneuroendocrinology. 2016;70:70–84. https://doi.org/10.1016/j.psyneuen.2016.04.019.

    Article  PubMed  Google Scholar 

  26. Caruso NC, Radovanovic B, Kennedy JD, Couper J, Kohler M, Kavanagh PS, et al. Sleep, executive functioning and behaviour in children and adolescents with type 1 diabetes. Sleep Med. 2014;15:1490–9. https://doi.org/10.1016/j.sleep.2014.08.011.

    Article  PubMed  Google Scholar 

  27. Vaisto J, Eloranta AM, Viitasalo A, Tompuri T, Lintu N, Karjalainen P, et al. Physical activity and sedentary behaviour in relation to cardiometabolic risk in children: cross-sectional findings from the physical activity and nutrition in children (panic) study. Int J Behav Nutr Phys Act. 2014;11:55. https://doi.org/10.1186/1479-5868-11-55.

    Article  PubMed  PubMed Central  Google Scholar 

  28. The Physical Activity Guidelines Advisory Committee. 2018 Physical activity guidelines advisory committee scientific report. Washington, DC: Department of Health and Human Services; 2018.

    Google Scholar 

  29. Juonala M, Viikari JS, Kahonen M, Taittonen L, Laitinen T, Hutri-Kahonen N, et al. Life-time risk factors and progression of carotid atherosclerosis in young adults: the cardiovascular risk in young finns study. Eur Heart J. 2010;31:1745–51. https://doi.org/10.1093/eurheartj/ehq141.

    Article  CAS  PubMed  Google Scholar 

  30. Ried-Larsen M, Grontved A, Kristensen PL, Froberg K, Andersen LB. Moderate-and-vigorous physical activity from adolescence to adulthood and subclinical atherosclerosis in adulthood: prospective observations from the European Youth Heart Study. Br J Sports Med. 2015;49:107–12. https://doi.org/10.1136/bjsports-2013-092409.

    Article  PubMed  Google Scholar 

  31. Maggio AB, Rizzoli RR, Marchand LM, Ferrari S, Beghetti M, Farpour-Lambert NJ. Physical activity increases bone mineral density in children with type 1 diabetes. Med Sci Sports Exerc. 2012;44:1206–11.

    Article  PubMed  Google Scholar 

  32. Korczak DJ, Madigan S, Colasanto M. Children’s physical activity and depression: a meta-analysis. Pediatrics. 2017;139. https://doi.org/10.1542/peds.2016-2266.

  33. Van Dusen DP, Kelder SH, Kohl HW 3rd, Ranjit N, Perry CL. Associations of physical fitness and academic performance among schoolchildren. J Sch Health. 2011;81:733–40. https://doi.org/10.1111/j.1746-1561.2011.00652.x.

    Article  PubMed  Google Scholar 

  34. Karlsson M, Rosengren B. Physical activity and academic achievements. Acta Paediatr. 2020;109:14–6. https://doi.org/10.1111/apa.15052.

    Article  PubMed  Google Scholar 

  35. Korhonen T, Kujala UM, Rose RJ, Kaprio J. Physical activity in adolescence as a predictor of alcohol and illicit drug use in early adulthood: a longitudinal population-based twin study. Twin Res Hum Genet. 2009;12:261–8. https://doi.org/10.1375/twin.12.3.261.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ali MM, Amialchuk A, Heller LR. The influence of physical activity on cigarette smoking among adolescents: evidence from add health. Nicotine Tob Res. 2015;17:539–45. https://doi.org/10.1093/ntr/ntu171.

    Article  PubMed  Google Scholar 

  37. Corbin KD, Driscoll KA, Pratley RE, Smith SR, Maahs DM, Mayer-Davis EJ, et al. Obesity in type 1 diabetes: pathophysiology, clinical impact, and mechanisms. Endocr Rev. 2018;39:629–63. https://doi.org/10.1210/er.2017-00191.

    Article  PubMed  Google Scholar 

  38. Zaharieva DP, Messer L, Paldus B, O’Neal DN, Maahs D, Riddell MC. Glucose control during physical activity and exercise using closed loop technology in type 1 diabetes. Can J Diabetes. 2020; https://doi.org/10.1016/j.jcjd.2020.06.003.

  39. Driscoll KA, Raymond J, Naranjo D, Patton SR. Fear of hypoglycemia in children and adolescents and their parents with type 1 diabetes. Curr Diab Rep. 2016;16:77. https://doi.org/10.1007/s11892-016-0762-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Adolfsson P, Riddell MC, Taplin CE, Davis EA, Fournier PA, Annan F, et al. Ispad clinical practice consensus guidelines 2018: Exercise in children and adolescents with diabetes. Pediatr Diabetes. 2018;19(Suppl 27):205–26. https://doi.org/10.1111/pedi.12755.

    Article  PubMed  Google Scholar 

  41. American Diabetes Association. 13. Children and adolescents: standards of medical care in diabetes-2020. Diabetes Care. 2020;43:S163–82. https://doi.org/10.2337/dc20-S013.

    Article  Google Scholar 

  42. Kahkoska AR, Watts ME, Driscoll KA, Bishop FK, Mihas P, Thomas J, et al. Understanding antagonism and synergism: a qualitative assessment of weight management in youth with type 1 diabetes mellitus. Obes Med. 2018;9:21–31. https://doi.org/10.1016/j.obmed.2017.12.001.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Addala A, Igudesman D, Kahkoska AR, Muntis FR, Souris KJ, Whitaker KJ, et al. The interplay of type 1 diabetes and weight management: a qualitative study exploring thematic progression from adolescence to young adulthood. Pediatr Diabetes. 2019;20:974–85. https://doi.org/10.1111/pedi.12903.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kumar S, Kelly AS. Review of childhood obesity: from epidemiology, etiology, and comorbidities to clinical assessment and treatment. Mayo Clin Proc. 2017;92:251–65. https://doi.org/10.1016/j.mayocp.2016.09.017.

    Article  PubMed  Google Scholar 

  45. Rajjo T, Mohammed K, Alsawas M, Ahmed AT, Farah W, Asi N, et al. Treatment of pediatric obesity: an umbrella systematic review. J Clin Endocrinol Metab. 2017;102:763–75. https://doi.org/10.1210/jc.2016-2574.

    Article  PubMed  Google Scholar 

  46. Driscoll KA, Corbin KD, Maahs DM, Pratley R, Bishop FK, Kahkoska A, et al. Biopsychosocial aspects of weight management in type 1 diabetes: a review and next steps. Curr Diab Rep. 2017;17:58. https://doi.org/10.1007/s11892-017-0892-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Forney KJ, Buchman-Schmitt JM, Keel PK, Frank GK. The medical complications associated with purging. Int J Eat Disord. 2016;49:249–59. https://doi.org/10.1002/eat.22504.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bulbul S. Exercise in the treatment of childhood obesity. Turk Pediatri Ars. 2020;55:2–10. https://doi.org/10.14744/TurkPediatriArs.2019.60430.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Xu F, Marchand S, Corcoran C, DiBiasio H, Clough R, Dyer CS, et al. A community-based nutrition and physical activity intervention for children who are overweight or obese and their caregivers. J Obes. 2017;2017:2746595. https://doi.org/10.1155/2017/2746595.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ho M, Garnett SP, Baur LA, Burrows T, Stewart L, Neve M, et al. Impact of dietary and exercise interventions on weight change and metabolic outcomes in obese children and adolescents: a systematic review and meta-analysis of randomized trials. JAMA Pediatr. 2013;167:759–68. https://doi.org/10.1001/jamapediatrics.2013.1453.

    Article  PubMed  Google Scholar 

  51. Guthold R, Stevens GA, Riley LM, Bull FC. Global trends in insufficient physical activity among adolescents: a pooled analysis of 298 population-based surveys with 1.6 million participants. Lancet Child Adolesc Health. 2020;4:23–35. https://doi.org/10.1016/S2352-464219)30323-2.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sundberg F, Forsander G, Fasth A, Ekelund U. Children younger than 7 years with type 1 diabetes are less physically active than healthy controls. Acta Paediatr. 2012;101:1164–9. https://doi.org/10.1111/j.1651-2227.2012.02803.x.

    Article  CAS  PubMed  Google Scholar 

  53. Czenczek-Lewandowska E, Leszczak J, Weres A, Baran J, Wyszynska J, Grzegorczyk J, et al. Sedentary behaviors in children and adolescents with type 1 diabetes, depending on the insulin therapy used. Medicine (Baltimore). 2019;98:e15625. https://doi.org/10.1097/MD.0000000000015625.

    Article  Google Scholar 

  54. Kummer S, Stahl-Pehe A, Castillo K, Bachle C, Graf C, Strassburger K, et al. Health behaviour in children and adolescents with type 1 diabetes compared to a representative reference population. PLoS One. 2014;9:e112083. https://doi.org/10.1371/journal.pone.0112083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fintini D, Di Giacinto B, Brufani C, Cafiero G, Patera PI, Turchetta A, et al. Impaired energy expenditure despite normal cardiovascular capacity in children with type 1 diabetes. Horm Res Paediatr. 2012;78:1–7. https://doi.org/10.1159/000339465.

    Article  CAS  PubMed  Google Scholar 

  56. Riddell MC, Perkins BA. Type 1 diabetes and vigorous exercise: applications of exercise physiology to patient management. Can J Diabetes. 2006;30:63–71. https://doi.org/10.1016/S1499-2671(06)01010-0.

  57. Yardley JE, Kenny GP, Perkins BA, Riddell MC, Malcolm J, Boulay P, et al. Effects of performing resistance exercise before versus after aerobic exercise on glycemia in type 1 diabetes. Diabetes Care. 2012;35:669–75. https://doi.org/10.2337/dc11-1844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chetty T, Shetty V, Fournier PA, Adolfsson P, Jones TW, Davis EA. Exercise management for young people with type 1 diabetes: a structured approach to the exercise consultation. Front Endocrinol (Lausanne). 2019;10:326. https://doi.org/10.3389/fendo.2019.00326.

    Article  Google Scholar 

  59. Hill JO, Wyatt HR, Peters JC. The importance of energy balance. Eur Endocrinol. 2013;9:111–5. https://doi.org/10.17925/EE.2013.09.02.111.

    Article  PubMed  PubMed Central  Google Scholar 

  60. McAuley SA, Horsburgh JC, Ward GM, La Gerche A, Gooley JL, Jenkins AJ, et al. Insulin pump basal adjustment for exercise in type 1 diabetes: a randomised crossover study. Diabetologia. 2016;59:1636–44. https://doi.org/10.1007/s00125-016-3981-9.

    Article  CAS  PubMed  Google Scholar 

  61. Zaharieva D, McGaugh S, Pooni R, Vienneau T, Ly T, Riddell M. Improved open-loop glucose control with basal insulin reduction 90 minutes before aerobic exercise in patients with type 1 diabetes on continuous subcutaneous insulin infusion. Diabetes Care. 2019;42:824–31.

    Article  CAS  PubMed  Google Scholar 

  62. Neyman A, Woerner S, Russ M, Yarbrough A, DiMeglio LA. Strategies that adolescents with type 1 diabetes use in relation to exercise. Clin Diabetes. 2020; https://doi.org/10.2337/cd19-0196.

  63. Moser O, Eckstein ML, West DJ, Goswami N, Sourij H, Hofmann P. Type 1 diabetes and physical exercise: moving (forward) as an adjuvant therapy. Curr Pharm Des. 2020. https://doi.org/10.2174/1381612826666200108113002.

  64. Scott SN, Anderson L, Morton JP, Wagenmakers AJM, Riddell MC. Carbohydrate restriction in type 1 diabetes: a realistic therapy for improved glycaemic control and athletic performance? Nutrients. 2019;11. https://doi.org/10.3390/nu11051022.

  65. Maran A, Pavan P, Bonsembiante B, Brugin E, Ermolao A, Avogaro A, et al. Continuous glucose monitoring reveals delayed nocturnal hypoglycemia after intermittent high-intensity exercise in nontrained patients with type 1 diabetes. Diabetes Technol Ther. 2010;12:763–8. https://doi.org/10.1089/dia.2010.0038.

    Article  PubMed  Google Scholar 

  66. Riddell MC, Gallen IW, Smart CE, Taplin CE, Adolfsson P, Lumb AN, et al. Exercise management in type 1 diabetes: a consensus statement. Lancet Diabetes Endocrinol. 2017;5:377–90. https://doi.org/10.1016/S2213-8587(17)30014-1.

    Article  PubMed  Google Scholar 

  67. Taplin CE, Cobry E, Messer L, McFann K, Chase HP, Fiallo-Scharer R. Preventing post-exercise nocturnal hypoglycemia in children with type 1 diabetes. J Pediatr. 2010;157:784–8. https://doi.org/10.1016/j.jpeds.2010.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Geddes J, Schopman JE, Zammitt NN, Frier BM. Prevalence of impaired awareness of hypoglycaemia in adults with type 1 diabetes. Diabet Med. 2008;25:501–4. https://doi.org/10.1111/j.1464-5491.2008.02413.x.

    Article  CAS  PubMed  Google Scholar 

  69. Farrell CM, McNeilly AD, Fournier P, Jones T, Hapca SM, West D, et al. A randomised controlled study of high intensity exercise as a dishabituating stimulus to improve hypoglycaemia awareness in people with type 1 diabetes: a proof-of-concept study. Diabetologia. 2020;63:853–63. https://doi.org/10.1007/s00125-019-05076-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Brickwood KJ, Watson G, O’Brien J, Williams AD. Consumer-based wearable activity trackers increase physical activity participation: systematic review and meta-analysis. JMIR Mhealth Uhealth. 2019;7:e11819. https://doi.org/10.2196/11819.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bohm B, Karwiese SD, Bohm H, Oberhoffer R. Effects of mobile health including wearable activity trackers to increase physical activity outcomes among healthy children and adolescents: systematic review. JMIR Mhealth Uhealth. 2019;7:e8298. https://doi.org/10.2196/mhealth.8298.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Maahs DM, Horton LA, Chase HP. The use of insulin pumps in youth with type 1 diabetes. Diabetes Technol Ther. 2010;12(Suppl 1):S59–65.

    Article  CAS  PubMed  Google Scholar 

  73. Johnson SR, Cooper MN, Jones TW, Davis EA. Long-term outcome of insulin pump therapy in children with type 1 diabetes assessed in a large population-based case-control study. Diabetologia. 2013;56:2392–400. https://doi.org/10.1007/s00125-013-3007-9.

    Article  CAS  PubMed  Google Scholar 

  74. Danne T, Nimri R, Battelino T, Bergenstal RM, Close KL, DeVries JH, et al. International consensus on use of continuous glucose monitoring. Diabetes Care. 2017;40:1631–40. https://doi.org/10.2337/dc17-1600.

    Article  PubMed  PubMed Central  Google Scholar 

  75. American Diabetes Association. 7. Diabetes technology: standards of medical care in diabetes-2020. Diabetes Care. 2020;43:S77–88. https://doi.org/10.2337/dc20-S007.

    Article  Google Scholar 

  76. Battelino T, Conget I, Olsen B, Schütz-Fuhrmann I, Hommel E, Hoogma R, et al. The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: a randomised controlled trial. Diabetologia. 2012;55:3155–62. https://doi.org/10.1007/s00125-012-2708-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. Effectiveness of continuous glucose monitoring in a clinical care environment: evidence from the juvenile diabetes research foundation continuous glucose monitoring (JDRF-CGM) trial. Diabetes Care. 2010;33:17–22. https://doi.org/10.2337/dc09-1502.

    Article  CAS  Google Scholar 

  78. Riveline JP, Schaepelynck P, Chaillous L, Renard E, Sola-Gazagnes A, Penfornis A, et al. Assessment of patient-led or physician-driven continuous glucose monitoring in patients with poorly controlled type 1 diabetes using basal-bolus insulin regimens: a 1-year multicenter study. Diabetes Care. 2012;35:965–71. https://doi.org/10.2337/dc11-2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wong JC, Foster NC, Maahs DM, Raghinaru D, Bergenstal RM, Ahmann AJ, et al. Real-time continuous glucose monitoring among participants in the T1D exchange clinic registry. Diabetes Care. 2014;37:2702–9. https://doi.org/10.2337/dc14-0303.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Prahalad P, Addala A, Scheinker D, Hood KK, Maahs DM. CGM initiation soon after type 1 diabetes diagnosis results in sustained CGM use and wear time. Diabetes Care. 2020;43:e3–4. https://doi.org/10.2337/dc19-1205.

    Article  PubMed  Google Scholar 

  81. Ekhlaspour L, Forlenza GP, Chernavvsky D, Maahs DM, Wadwa RP, Deboer MD, et al. Closed loop control in adolescents and children during winter sports: use of the tandem control-iq ap system. Pediatr Diabetes. 2019;20:759–68. https://doi.org/10.1111/pedi.12867.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Dovc K, Macedoni M, Bratina N, Lepej D, Nimri R, Atlas E, et al. Closed-loop glucose control in young people with type 1 diabetes during and after unannounced physical activity: a randomised controlled crossover trial. Diabetologia. 2017;60:2157–67. https://doi.org/10.1007/s00125-017-4395-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Breton MD, Chernavvsky DR, Forlenza GP, DeBoer MD, Robic J, Wadwa RP, et al. Closed-loop control during intense prolonged outdoor exercise in adolescents with type 1 diabetes: the artificial pancreas ski study. Diabetes Care. 2017;40:1644–50. https://doi.org/10.2337/dc17-0883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Garg SK, Weinzimer SA, Tamborlane WV, Buckingham BA, Bode BW, Bailey TS, et al. Glucose outcomes with the in-home use of a hybrid closed-loop insulin delivery system in adolescents and adults with type 1 diabetes. Diabetes Technol Ther. 2017;19:155–63. https://doi.org/10.1089/dia.2016.0421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shai I, Schwarzfuchs D, Henkin Y, Shahar DR, Witkow S, Greenberg I, et al. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med. 2008;359:229–41. https://doi.org/10.1056/NEJMoa0708681.

    Article  CAS  PubMed  Google Scholar 

  86. Estruch R, Ros E, Salas-Salvado J, Covas MI, Corella D, Aros F, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368:1279–90. https://doi.org/10.1056/NEJMoa1200303.

    Article  CAS  PubMed  Google Scholar 

  87. Smart CE, Annan F, Higgins LA, Jelleryd E, Lopez M, Acerini CL. ISPAD clinical practice consensus guidelines 2018: Nutritional management in children and adolescents with diabetes. Pediatr Diabetes. 2018;19(Suppl 27):136–54. https://doi.org/10.1111/pedi.12738.

    Article  PubMed  Google Scholar 

  88. Patton SR, Dolan LM, Powers SW. Dietary adherence and associated glycemic control in families of young children with type 1 diabetes. J Am Diet Assoc. 2007;107:46–52. https://doi.org/10.1016/j.jada.2006.10.012.

    Article  PubMed  Google Scholar 

  89. Patton SR. Adherence to diet in youth with type 1 diabetes. J Am Diet Assoc. 2011;111:550–5. https://doi.org/10.1016/j.jada.2011.01.016.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Faber EM, van Kampen PM, Clement-de Boers A, Houdijk E, van der Kaay DCM. The influence of food order on postprandial glucose levels in children with type 1 diabetes. Pediatr Diabetes. 2018;19:809–15. https://doi.org/10.1111/pedi.12640.

    Article  CAS  PubMed  Google Scholar 

  91. Bolla AM, Caretto A, Laurenzi A, Scavini M, Piemonti L. Low-carb and ketogenic diets in type 1 and type 2 diabetes. Nutrients. 2019;11. https://doi.org/10.3390/nu11050962.

  92. Krebs JD, Parry Strong A, Cresswell P, Reynolds AN, Hanna A, Haeusler S. A randomised trial of the feasibility of a low carbohydrate diet vs standard carbohydrate counting in adults with type 1 diabetes taking body weight into account. Asia Pac J Clin Nutr. 2016;25:78–84. https://doi.org/10.6133/apjcn.2016.25.1.11.

    Article  CAS  PubMed  Google Scholar 

  93. Eiswirth M, Clark E, Diamond M. Low carbohydrate diet and improved glycaemic control in a patient with type one diabetes. Endocrinol Diabetes Metab Case Rep. 2018;2018:18–0002. https://doi.org/10.1530/EDM-18-0002.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Leow ZZX, Guelfi KJ, Davis EA, Jones TW, Fournier PA. The glycaemic benefits of a very-low-carbohydrate ketogenic diet in adults with type 1 diabetes mellitus may be opposed by increased hypoglycaemia risk and dyslipidaemia. Diabet Med. 2018. https://doi.org/10.1111/dme.13663.

  95. de Bock M, Lobley K, Anderson D, Davis E, Donaghue K, Pappas M, et al. Endocrine and metabolic consequences due to restrictive carbohydrate diets in children with type 1 diabetes: an illustrative case series. Pediatr Diabetes. 2018;19:129–37. https://doi.org/10.1111/pedi.12527.

    Article  PubMed  Google Scholar 

  96. Lennerz BS, Barton A, Bernstein RK, Dikeman RD, Diulus C, Hallberg S, et al. Management of type 1 diabetes with a very low-carbohydrate diet. Pediatrics. 2018;141. https://doi.org/10.1542/peds.2017-3349.

  97. Ranjan A, Schmidt S, Damm-Frydenberg C, Steineck I, Clausen TR, Holst JJ, et al. Low-carbohydrate diet impairs the effect of glucagon in the treatment of insulin-induced mild hypoglycemia: a randomized crossover study. Diabetes Care. 2017;40:132–5. https://doi.org/10.2337/dc16-1472.

    Article  CAS  PubMed  Google Scholar 

  98. Chen TY, Smith W, Rosenstock JL, Lessnau KD. A life-threatening complication of Atkins diet. Lancet. 2006;367:958. https://doi.org/10.1016/S0140-6736(06)68394-3.

    Article  PubMed  Google Scholar 

  99. Chalasani S, Fischer J. South beach diet associated ketoacidosis: a case report. J Med Case Rep. 2008;2:45. https://doi.org/10.1186/1752-1947-2-45.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Styne DM, Arslanian SA, Connor EL, Farooqi IS, Murad MH, Silverstein JH, et al. Pediatric obesity-assessment, treatment, and prevention: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2017;102:709–57. https://doi.org/10.1210/jc.2016-2573.

    Article  PubMed  PubMed Central  Google Scholar 

  101. American Diabetes Association. Chapter 5: facilitating behavior change and well-being to improve health outcomes: standards of medical care in diabetes-2020. Diabetes Care. 2020;43:S48–65. https://doi.org/10.2337/dc20-S005.

    Article  Google Scholar 

  102. Delamater AM, de Wit M, McDarby V, Malik JA, Hilliard ME, Northam E, et al. Ispad clinical practice consensus guidelines 2018: Psychological care of children and adolescents with type 1 diabetes. Pediatr Diabetes. 2018;19(Suppl 27):237–49. https://doi.org/10.1111/pedi.12736.

    Article  PubMed  Google Scholar 

  103. Wild D, von Maltzahn R, Brohan E, Christensen T, Clauson P, Gonder-Frederick L. A critical review of the literature on fear of hypoglycemia in diabetes: implications for diabetes management and patient education. Patient Educ Couns. 2007;68:10–5. https://doi.org/10.1016/j.pec.2007.05.003.

    Article  PubMed  Google Scholar 

  104. Muller L, Habif S, Leas S, Aronoff-Spencer E. Reducing hypoglycemia in the real world: a retrospective analysis of predictive low-glucose suspend technology in an ambulatory insulin-dependent cohort. Diabetes Technol Ther. 2019;21:478–84. https://doi.org/10.1089/dia.2019.0190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sherr JL, Tauschmann M, Battelino T, de Bock M, Forlenza G, Roman R, et al. ISPAD clinical practice consensus guidelines 2018: Diabetes technologies. Pediatr Diabetes. 2018;19(Suppl 27):302–25. https://doi.org/10.1111/pedi.12731.

    Article  PubMed  Google Scholar 

  106. Diabetes Control and Complications Trial Research Group, Nathan DM, Genuth S, Lachin J, Cleary P, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86. https://doi.org/10.1056/NEJM199309303291401.

    Article  Google Scholar 

  107. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study Research Group. Intensive diabetes treatment and cardiovascular outcomes in type 1 diabetes: the DCCT/EDIC study 30-year follow-up. Diabetes Care. 2016;39:686–93. https://doi.org/10.2337/dc15-1990.

    Article  CAS  Google Scholar 

  108. Matteucci E, Giampietro O, Covolan V, Giustarini D, Fanti P, Rossi R. Insulin administration: present strategies and future directions for a noninvasive (possibly more physiological) delivery. Drug Des Devel Ther. 2015;9:3109–18. https://doi.org/10.2147/DDDT.S79322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Edgerton DS, Lautz M, Scott M, Everett CA, Stettler KM, Neal DW, et al. Insulin’s direct effects on the liver dominate the control of hepatic glucose production. J Clin Invest. 2006;116:521–7. https://doi.org/10.1172/JCI27073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Taylor SI, Blau JE, Rother KI, Beitelshees AL. SGLT2 inhibitors as adjunctive therapy for type 1 diabetes: balancing benefits and risks. Lancet Diabetes Endocrinol. 2019;7:949–58. https://doi.org/10.1016/S2213-8587(19)30154-8.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Cherney DZ, Perkins BA. Sodium-glucose cotransporter 2 inhibition in type 1 diabetes: simultaneous glucose lowering and renal protection? Can J Diabetes. 2014;38:356–63. https://doi.org/10.1016/j.jcjd.2014.05.006.

    Article  PubMed  Google Scholar 

  112. Garg SK, Henry RR, Banks P, Buse JB, Davies MJ, Fulcher GR, et al. Effects of sotagliflozin added to insulin in patients with type 1 diabetes. N Engl J Med. 2017;377:2337–48. https://doi.org/10.1056/NEJMoa1708337.

    Article  CAS  PubMed  Google Scholar 

  113. Biester T, Aschemeier B, Fath M, Frey M, Scheerer MF, Kordonouri O, et al. Effects of dapagliflozin on insulin-requirement, glucose excretion and ss-hydroxybutyrate levels are not related to baseline hba1c in youth with type 1 diabetes. Diabetes Obes Metab. 2017;19:1635–9. https://doi.org/10.1111/dom.12975.

    Article  CAS  PubMed  Google Scholar 

  114. Biester T, Nieswandt A, Biester S, Remus K, Muller I, Atlas E, et al. Adjunctive therapy with dapagliflozin improves full closed loop post prandial glycaemic control in type 1 diabetic young adults - The DAPADream. International Diabetes Federation 2017 Congress. 2017: Abu Dhabi.

  115. Polsky S, Ellis SL. Obesity, insulin resistance, and type 1 diabetes mellitus. Curr Opin Endocrinol Diabetes Obes. 2015;22:277–82. https://doi.org/10.1097/MED.0000000000000170.

    Article  CAS  PubMed  Google Scholar 

  116. Hinnen D. Glucagon-like peptide 1 receptor agonists for type 2 diabetes. Diabetes Spectr. 2017;30:202–10. https://doi.org/10.2337/ds16-0026.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M, et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N Engl J Med. 2015;373:11–22. https://doi.org/10.1056/NEJMoa1411892.

    Article  CAS  PubMed  Google Scholar 

  118. Traina AN, Lull ME, Hui AC, Zahorian TM, Lyons-Patterson J. Once-weekly exenatide as adjunct treatment of type 1 diabetes mellitus in patients receiving continuous subcutaneous insulin infusion therapy. Can J Diabetes. 2014;38:269–72. https://doi.org/10.1016/j.jcjd.2013.10.006.

    Article  PubMed  Google Scholar 

  119. Raman VS, Mason KJ, Rodriguez LM, Hassan K, Yu X, Bomgaars L, et al. The role of adjunctive exenatide therapy in pediatric type 1 diabetes. Diabetes Care. 2010;33:1294–6. https://doi.org/10.2337/dc09-1959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Liu L, Shao Z, Xia Y, Qin J, Xiao Y, Zhou Z, et al. Incretin-based therapies for patients with type 1 diabetes: a meta-analysis. Endocr Connect. 2019;8:277–88. https://doi.org/10.1530/EC-18-0546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Marlow AL, Rowe CW, Anderson D, Wynne K, King BR, Howley P, et al. Young children, adolescent girls and women with type 1 diabetes are more overweight and obese than reference populations, and this is associated with increased cardiovascular risk factors. Diabet Med. 2019;36:1487–93. https://doi.org/10.1111/dme.14133.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dessi P. Zaharieva.

Ethics declarations

Conflict of Interest

DPZ has received speaking honoraria from Medtronic Diabetes, Ascensia Diabetes, and Insulet. AA is supported by the Maternal Child Health Research Institute at Stanford University and is an Ernest and Amelia Gallo Endowed Postdoctoral Fellow. KMS is a consultant for Dexcom and has had research support from NIH, JDRF, and the Helmsley Charitable Trust. DMM has had research support from the NIH, JDRF, NSF, and the Helmsley Charitable Trust, and his institution has had research support from Medtronic Diabetes, Dexcom, Insulet, Bigfoot Biomedical, Tandem, and Roche. DMM has also consulted for Abbott, the Helmsley Charitable Trust, Sanofi, Novo Nordisk, Eli Lilly, Medtronic, and Insulet.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Childhood Obesity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaharieva, D.P., Addala, A., Simmons, K.M. et al. Weight Management in Youth with Type 1 Diabetes and Obesity: Challenges and Possible Solutions. Curr Obes Rep 9, 412–423 (2020). https://doi.org/10.1007/s13679-020-00411-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13679-020-00411-z

Keywords

Navigation