Skip to main content

Advertisement

Log in

Dietary Intake and Systemic Inflammation: Can We Use Food as Medicine?

  • REVIEW
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review summarizes the current literature regarding the association between diet and systemic inflammation.

Recent Findings

Data in humans suggests that consumption of plant-based nutrients is associated with a reduction in systemic inflammation, while consumption of red meat and excessive dairy has the opposite effect and may increase risk of acute flares in those that suffer from certain chronic diseases like inflammatory bowel disease or psoriasis and certain cancers.

Summary

There is a known association between diet and systemic inflammation; thus, we recommend that clinicians discuss plant-based, whole food diets with patients, particularly those that suffer from chronic inflammatory diseases as an adjunct treatment for these conditions. Future research should evaluate whether adherence to these types of diets is sustainable in the long term and how these changes affect important quality of life concerns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •   Of importance •• Of major importance

  1. Willett W, Rockström J, Loken B, Springmann M, Lang T, Vermeulen S, et al. Food in the anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet. 2019;393(10170):447–92.

    Article  PubMed  Google Scholar 

  2. Remde A, DeTurk SN, Almardini A, Steiner L, Wojda T. Plant-predominant eating patterns - how effective are they for treating obesity and related cardiometabolic health outcomes? - a systematic review. Nutr Rev. 2022;80(5):1094–104.

    Article  PubMed  Google Scholar 

  3. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63.

    Article  CAS  PubMed  Google Scholar 

  6. Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med. 2016;375(24):2369–79.

    Article  CAS  PubMed  Google Scholar 

  7. Feghali CA, Wright TM. Cytokines in acute and chronic inflammation. Front Biosci. 1997;2:d12-26.

    Article  CAS  PubMed  Google Scholar 

  8. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–20.

    Article  CAS  PubMed  Google Scholar 

  9. Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. Into the eye of the cytokine storm. Microbiol Mol Biol Rev. 2012;76(1):16–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kany S, Vollrath JT, Relja B. Cytokines in inflammatory disease. Int J Mol Sci. 2019;20(23).

  11. • Matarazzo L, Hernandez Santana YE, Walsh PT, Fallon PG. The IL-1 cytokine family as custodians of barrier immunity. Cytokine. 2022;154:155890. This article explains the function of the IL-1 cytokine family as it relates to immune-mediated diseases of the gut and skin. It details the mechanisms by which dysregulation of these molecules leads to the breakdown of natural barriers, ultimately causing excess inflammation.

  12. Menghini P, Corridoni D, Buttó LF, Osme A, Shivaswamy S, Lam M, et al. Neutralization of IL-1α ameliorates Crohn’s disease-like ileitis by functional alterations of the gut microbiome. Proc Natl Acad Sci USA. 2019;116(52):26717–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nowarski R, Jackson R, Gagliani N, de Zoete MR, Palm NW, Bailis W, et al. Epithelial IL-18 equilibrium controls barrier function in colitis. Cell. 2015;163(6):1444–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Romberg N, Al Moussawi K, Nelson-Williams C, Stiegler AL, Loring E, Choi M, et al. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet. 2014;46(10):1135–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Canna SW, de Jesus AA, Gouni S, Brooks SR, Marrero B, Liu Y, et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet. 2014;46(10):1140–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Levy M, Thaiss CA, Zeevi D, Dohnalová L, Zilberman-Schapira G, Mahdi JA, et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell. 2015;163(6):1428–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ince MN, Elliott DE. Immunologic and molecular mechanisms in inflammatory bowel disease. Surg Clin North Am. 2007;87(3):681–96.

    Article  PubMed  Google Scholar 

  18. Atreya R, Mudter J, Finotto S, Müllberg J, Jostock T, Wirtz S, et al. Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo. Nat Med. 2000;6(5):583–8.

    Article  CAS  PubMed  Google Scholar 

  19. Hussain SP, Hofseth LJ, Harris CC. Radical causes of cancer. Nat Rev Cancer. 2003;3(4):276–85.

    Article  CAS  PubMed  Google Scholar 

  20. Luo JL, Maeda S, Hsu LC, Yagita H, Karin M. Inhibition of NF-kappaB in cancer cells converts inflammation- induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell. 2004;6(3):297–305.

    Article  CAS  PubMed  Google Scholar 

  21. Zeng X, Li J, Kang LN, Xi MR, Liao GD. Potential clinical value of interleukin-31 and interleukin-33 with their receptors expression as diagnostic and predictive factors in endometrial cancer: a case-control study. Int J Clin Exp Pathol. 2020;13(6):1324–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. He Y, Zhang X, Pan W, Tai F, Liang L, Shi J. Interleukin-31 receptor α is required for basal-like breast cancer progression. Front Oncol. 2020;10:816.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nestle FO, Kaplan DH, Barker J. Psoriasis. N Engl J Med. 2009;361(5):496–509.

    Article  CAS  PubMed  Google Scholar 

  24. McGeachy MJ, Cua DJ, Gaffen SL. The IL-17 family of cytokines in health and disease. Immunity. 2019;50(4):892–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boehncke WH, Boehncke S, Schön MP. Managing comorbid disease in patients with psoriasis. BMJ. 2010;340: b5666.

    Article  PubMed  Google Scholar 

  26. Guttman-Yassky E, Nograles KE, Krueger JG. Contrasting pathogenesis of atopic dermatitis and psoriasis–part I: clinical and pathologic concepts. J Allergy Clin Immunol. 2011;127(5):1110–8.

    Article  PubMed  Google Scholar 

  27. Klonowska J, Gleń J, Nowicki RJ, Trzeciak M. New cytokines in the pathogenesis of atopic dermatitis-new therapeutic targets. Int J Mol Sci. 2018;19(10).

  28. Gittler JK, Shemer A, Suárez-Fariñas M, Fuentes-Duculan J, Gulewicz KJ, Wang CQ, et al. Progressive activation of T(H)2/T(H)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J Allergy Clin Immunol. 2012;130(6):1344–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sidbury R, Khorsand K. Evolving concepts in atopic dermatitis. Curr Allergy Asthma Rep. 2017;17(7):42.

    Article  PubMed  Google Scholar 

  30. Kim BE, Leung DY, Boguniewicz M, Howell MD. Loricrin and involucrin expression is down-regulated by Th2 cytokines through STAT-6. Clin Immunol. 2008;126(3):332–7.

    Article  CAS  PubMed  Google Scholar 

  31. Kim J, Kim BE, Leung DYM. Pathophysiology of atopic dermatitis: clinical implications. Allergy Asthma Proc. 2019;40(2):84–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wong CK, Leung KM, Qiu HN, Chow JY, Choi AO, Lam CW. Activation of eosinophils interacting with dermal fibroblasts by pruritogenic cytokine IL-31 and alarmin IL-33: implications in atopic dermatitis. PLoS ONE. 2012;7(1): e29815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhu F, Du B, Xu B. Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review. Crit Rev Food Sci Nutr. 2018;58(8):1260–70.

    Article  CAS  PubMed  Google Scholar 

  34. Yao CK, Muir JG, Gibson PR. Review article: insights into colonic protein fermentation, its modulation and potential health implications. Aliment Pharmacol Ther. 2016;43(2):181–96.

    Article  CAS  PubMed  Google Scholar 

  35. Kim MS, Hwang SS, Park EJ, Bae JW. Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intestinal inflammation. Environ Microbiol Rep. 2013;5(5):765–75.

    CAS  PubMed  Google Scholar 

  36. Dong TS, Gupta A. Influence of early life, diet, and the environment on the microbiome. Clin Gastroenterol Hepatol. 2019;17(2):231–42.

    Article  PubMed  Google Scholar 

  37. Wark G, Samocha-Bonet D, Ghaly S, Danta M. The role of diet in the pathogenesis and management of inflammatory bowel disease: a review. Nutrients. 2020;13(1).

  38. Hou JK, Abraham B, El-Serag H. Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature. Am J Gastroenterol. 2011;106(4):563–73.

    Article  CAS  PubMed  Google Scholar 

  39. Jantchou P, Morois S, Clavel-Chapelon F, Boutron-Ruault MC, Carbonnel F. Animal protein intake and risk of inflammatory bowel disease: the E3N prospective study. Am J Gastroenterol. 2010;105(10):2195–201.

    Article  CAS  PubMed  Google Scholar 

  40. Gentschew L, Ferguson LR. Role of nutrition and microbiota in susceptibility to inflammatory bowel diseases. Mol Nutr Food Res. 2012;56(4):524–35.

    Article  CAS  PubMed  Google Scholar 

  41. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. 2010;107(33):14691–6.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Baumgart M, Dogan B, Rishniw M, Weitzman G, Bosworth B, Yantiss R, et al. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. Isme j. 2007;1(5):403–18.

    Article  CAS  PubMed  Google Scholar 

  43. D’Souza S, Levy E, Mack D, Israel D, Lambrette P, Ghadirian P, et al. Dietary patterns and risk for Crohn’s disease in children. Inflamm Bowel Dis. 2008;14(3):367–73.

    Article  PubMed  Google Scholar 

  44. Ruemmele FM, Veres G, Kolho KL, Griffiths A, Levine A, Escher JC, et al. Consensus guidelines of ECCO/ESPGHAN on the medical management of pediatric Crohn’s disease. J Crohns Colitis. 2014;8(10):1179–207.

    Article  CAS  PubMed  Google Scholar 

  45. Assa A, Shamir R. Exclusive enteral nutrition for inducing remission in inflammatory bowel disease in paediatric patients. Curr Opin Clin Nutr Metab Care. 2017;20(5):384–9.

    Article  PubMed  Google Scholar 

  46. •• Fritsch J, Garces L, Quintero MA, Pignac-Kobinger J, Santander AM, Fernández I, et al. Low-fat, high-fiber diet reduces markers of inflammation and dysbiosis and improves quality of life in patients with ulcerative colitis. Clin Gastroenterol Hepatol. 2021;19(6):1189–99.e30. This cross-over study is one of the few recent studies that directly compares the response of dietary intervention on quantifiable inflammation and quality of life in patients with ulcerative colitis. It demonstrates that it is feasible and beneficial to study controlled dietary changes in a cohort of patients with chronic inflammatory conditions.

  47. Turpin W, Dong M, Sasson G, Raygoza Garay JA, Espin-Garcia O, Lee SH, et al. Mediterranean-like dietary pattern associations with gut microbiome composition and subclinical gastrointestinal inflammation. Gastroenterology. 2022;163(3):685–98.

    Article  CAS  PubMed  Google Scholar 

  48. Olendzki BC, Silverstein TD, Persuitte GM, Ma Y, Baldwin KR, Cave D. An anti-inflammatory diet as treatment for inflammatory bowel disease: a case series report. Nutr J. 2014;13:5.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Campmans-Kuijpers MJE, Dijkstra G. Food and food groups in inflammatory bowel disease (ibd): the design of the groningen anti-inflammatory diet (GrAID). Nutrients. 2021;13(4).

  50. Halmos EP, Christophersen CT, Bird AR, Shepherd SJ, Muir JG, Gibson PR. Consistent prebiotic effect on gut microbiota with altered FODMAP intake in patients with crohn’s disease: a randomised, controlled cross-over trial of well-defined diets. Clin Transl Gastroenterol. 2016;7(4): e164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. •• Jiang Y, Jarr K, Layton C, Gardner CD, Ashouri JF, Abreu MT, et al. Therapeutic implications of diet in inflammatory bowel disease and related immune-mediated inflammatory diseases. Nutrients. 2021;13(3). This review article summarizes the dietary interventions studied in patients with inflammatory bowel disease and hypothesizes how these interventions could be applied to other inflammatory diseases such as rheumatoid arthritis and psoriasis.

  52. Béliveau R, Gingras D. Role of nutrition in preventing cancer. Can Fam Physician. 2007;53(11):1905–11.

    PubMed  PubMed Central  Google Scholar 

  53. Key TJ, Schatzkin A, Willett WC, Allen NE, Spencer EA, Travis RC. Diet, nutrition and the prevention of cancer. Public Health Nutr. 2004;7(1a):187–200.

    Article  PubMed  Google Scholar 

  54. Chan DS, Lau R, Aune D, Vieira R, Greenwood DC, Kampman E, et al. Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies. PLoS ONE. 2011;6(6): e20456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rodriguez C, McCullough ML, Mondul AM, Jacobs EJ, Chao A, Patel AV, et al. Meat consumption among Black and White men and risk of prostate cancer in the Cancer Prevention Study II Nutrition Cohort. Cancer Epidemiol Biomarkers Prev. 2006;15(2):211–6.

    Article  PubMed  Google Scholar 

  56. Cross AJ, Sinha R. Meat-related mutagens/carcinogens in the etiology of colorectal cancer. Environ Mol Mutagen. 2004;44(1):44–55.

    Article  CAS  PubMed  Google Scholar 

  57. Anand P, Kunnumakkara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res. 2008;25(9):2097–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ceschi M, Gutzwiller F, Moch H, Eichholzer M, Probst-Hensch NM. Epidemiology and pathophysiology of obesity as cause of cancer. Swiss Med Wkly. 2007;137(3–4):50–6.

    CAS  PubMed  Google Scholar 

  59. Iyengar NM, Hudis CA, Dannenberg AJ. Obesity and cancer: local and systemic mechanisms. Annu Rev Med. 2015;66:297–309.

    Article  CAS  PubMed  Google Scholar 

  60. Carmichael AR. Obesity as a risk factor for development and poor prognosis of breast cancer. BJOG. 2006;113(10):1160–6.

    Article  CAS  PubMed  Google Scholar 

  61. Temraz S, Nassar F, Nasr R, Charafeddine M, Mukherji D, Shamseddine A. Gut microbiome: a promising biomarker for immunotherapy in colorectal cancer. Int J Mol Sci. 2019;20(17).

  62. Crane TE, Khulpateea BR, Alberts DS, Basen-Engquist K, Thomson CA. Dietary intake and ovarian cancer risk: a systematic review. Cancer Epidemiol Biomarkers Prev. 2014;23(2):255–73.

    Article  CAS  PubMed  Google Scholar 

  63. De Pessemier B, Grine L, Debaere M, Maes A, Paetzold B, Callewaert C. Gut-skin axis: current knowledge of the interrelationship between microbial dysbiosis and skin conditions. Microorganisms. 2021;9(2).

  64. Reunala T, Hervonen K, Salmi T. Dermatitis herpetiformis: an update on diagnosis and management. Am J Clin Dermatol. 2021;22(3):329–38.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Domínguez O, Plaza AM, Alvaro M. Relationship between atopic dermatitis and food allergy. Curr Pediatr Rev. 2020;16(2):115–22.

    Article  PubMed  Google Scholar 

  66. Rogler G, Singh A, Kavanaugh A, Rubin DT. Extraintestinal manifestations of inflammatory bowel disease: current concepts, treatment, and implications for disease management. Gastroenterology. 2021;161(4):1118–32.

    Article  CAS  PubMed  Google Scholar 

  67. Baldwin H, Tan J. Effects of diet on acne and its response to treatment. Am J Clin Dermatol. 2021;22(1):55–65.

    Article  PubMed  Google Scholar 

  68. Myers B, Brownstone N, Reddy V, Chan S, Thibodeaux Q, Truong A, et al. The gut microbiome in psoriasis and psoriatic arthritis. Best Pract Res Clin Rheumatol. 2019;33(6):101494.

    Article  PubMed  Google Scholar 

  69. Herder C, Peltonen M, Koenig W, Kräft I, Müller-Scholze S, Martin S, et al. Systemic immune mediators and lifestyle changes in the prevention of type 2 diabetes: results from the Finnish Diabetes Prevention Study. Diabetes. 2006;55(8):2340–6.

    Article  CAS  PubMed  Google Scholar 

  70. Müller S, Martin S, Koenig W, Hanifi-Moghaddam P, Rathmann W, Haastert B, et al. Impaired glucose tolerance is associated with increased serum concentrations of interleukin 6 and co-regulated acute-phase proteins but not TNF-alpha or its receptors. Diabetologia. 2002;45(6):805–12.

    Article  PubMed  Google Scholar 

  71. Madsen EL, Rissanen A, Bruun JM, Skogstrand K, Tonstad S, Hougaard DM, et al. Weight loss larger than 10% is needed for general improvement of levels of circulating adiponectin and markers of inflammation in obese subjects: a 3-year weight loss study. Eur J Endocrinol. 2008;158(2):179–87.

    Article  CAS  PubMed  Google Scholar 

  72. Johnson JB, Summer W, Cutler RG, Martin B, Hyun DH, Dixit VD, et al. Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma. Free Radic Biol Med. 2007;42(5):665–74.

    Article  CAS  PubMed  Google Scholar 

  73. •• Cox SR, Lindsay JO, Fromentin S, Stagg AJ, McCarthy NE, Galleron N, et al. Effects of low FODMAP diet on symptoms, fecal microbiome, and markers of inflammation in patients with quiescent inflammatory bowel disease in a randomized trial. Gastroenterology. 2020;158(1):176–88.e7. This randomized controlled trial compares the symptoms and inflammatory markers in patients who follow a low FODMAP diet with those who adhered to a regular diet. This study also analyzed stool samples and demonstrated that a Low FODMAP diet was associated with lower quantities of inflammatory bacteria.

  74. Calder PC, Ahluwalia N, Brouns F, Buetler T, Clement K, Cunningham K, et al. Dietary factors and low-grade inflammation in relation to overweight and obesity. Br J Nutr. 2011;106(Suppl 3):S5-78.

    Article  CAS  PubMed  Google Scholar 

  75. Krajcovicova-Kudlackova M, Blazicek P. C-reactive protein and nutrition. Bratisl Lek Listy. 2005;106(11):345–7.

    CAS  PubMed  Google Scholar 

  76. Szeto YT, Kwok TC, Benzie IF. Effects of a long-term vegetarian diet on biomarkers of antioxidant status and cardiovascular disease risk. Nutrition. 2004;20(10):863–6.

    Article  CAS  PubMed  Google Scholar 

  77. Saltiel AR, Olefsky JM. Inflammatory mechanisms linking obesity and metabolic disease. J Clin Invest. 2017;127(1):1–4.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Dai J, Miller AH, Bremner JD, Goldberg J, Jones L, Shallenberger L, et al. Adherence to the mediterranean diet is inversely associated with circulating interleukin-6 among middle-aged men: a twin study. Circulation. 2008;117(2):169–75.

    Article  CAS  PubMed  Google Scholar 

  79. Chrysohoou C, Panagiotakos DB, Pitsavos C, Das UN, Stefanadis C. Adherence to the Mediterranean diet attenuates inflammation and coagulation process in healthy adults: The ATTICA Study. J Am Coll Cardiol. 2004;44(1):152–8.

    Article  PubMed  Google Scholar 

  80. Fung TT, McCullough ML, Newby PK, Manson JE, Meigs JB, Rifai N, et al. Diet-quality scores and plasma concentrations of markers of inflammation and endothelial dysfunction. Am J Clin Nutr. 2005;82(1):163–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Pearlman.

Ethics declarations

Conflict of Interest

The authors do not have any potential conflicts of interest to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Gastroenterology, Critical Care, and Lifestyle

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graff, E., Vedantam, S., Parianos, M. et al. Dietary Intake and Systemic Inflammation: Can We Use Food as Medicine?. Curr Nutr Rep 12, 247–254 (2023). https://doi.org/10.1007/s13668-023-00458-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-023-00458-z

Keywords

Navigation