Skip to main content

Advertisement

Log in

Meet the Meat Alternatives: The Value of Alternative Protein Sources

  • Gastroenterology, Critical Care, and Lifestyle Medicine (SA McClave, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Meat alternatives are non-animal-based proteins with chemical characteristics and aesthetic qualities comparable to meat. The global increase in meat consumption is associated with the adverse environmental impacts such as increased greenhouse gas emissions contributing to global warming and higher water/land use. In this review, we focus on the development, availability, and nutritional value of various meat alternatives and their impact on meat consumption.

Recent Findings

Changing dietary patterns and drive for environmental conservation contribute to the recent increase in the consumption of environmental friendly sources of proteins such as plant-based and mycoprotein-based meat alternatives.

Summary

Perceived lack of naturalness and poor cultural acceptance present as roadblocks for widespread societal acceptance for meat alternatives. Continued research and efforts are needed to make the meat alternatives more aesthetically appealing with improved nutritive value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ismail I, Hwang Y-H, Joo S-T. Meat analog as future food: a review. J Anim Sci Technol. 2020;62(2):111–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wild F, Czerny M, Janssen AM, Kole AP, Zunabovic M, Domig KJ. The evolution of a plant-based alternative to meat. From niche markets to widely accepted meat alternatives. Agro Food Industry Hi-Tech. 2014;25(1):45–9.

    Google Scholar 

  3. Kumar P, Chatli M, Mehta N, Singh P, Malav O, Verma AK. Meat analogues: health promising sustainable meat substitutes. Crit Rev Food Sci Nutr. 2017;57(5):923–32.

    Article  CAS  PubMed  Google Scholar 

  4. Smetana S, Mathys A, Knoch A, Heinz V. Meat alternatives: life cycle assessment of most known meat substitutes. Int J Life Cycle Assess. 2015;20(9):1254–67.

    Article  CAS  Google Scholar 

  5. Shurtleff W, Huang H, Aoyagi A. History of soybeans and soyfoods in China and Taiwan, and in Chinese cookbooks, restaurants, and Chinese work with soyfoods outside China (1024 BCE to 2014): Extensively Annotated Bibliography and Sourcebook, Including Manchuria, Hong Kong and Tibet: Soyinfo Center. Available from: https://www.soyinfocenter.com/pdf/176/Chin.pdf. 2014. Accessed on August 1 2020.

  6. Ajwalia R. Meat alternative gaining importance over traditional meat products: a review. Food Agric Spectrum J. 2020;1(2).

  7. Kinsella JE, Franzen KL. Texturized proteins: fabrication, flavoring, and nutrition. Critical Rev Food Sci Nutr. 1978;10(2):147–207.

    Article  CAS  Google Scholar 

  8. The rise of plant-based “meats”. Tufts University Health & Nutrition Letter. Available from: https://www.searchproquestcom/docview/2357380876?accountid=9920. 2020:4–5. Accessed on August 1 2020.

  9. Bohrer BM. An investigation of the formulation and nutritional composition of modern meat analogue products. Food Sci Human Wellness. 2019;8(4):320–9.

    Article  Google Scholar 

  10. World Economic Forum. Available from: http://www3.weforum.org/docs/WEF_White_Paper_Alternative_Proteins.pdf. Accessed on August 1 2020.

  11. Available from: https://www.beyondmeat.com. Accessed on August 1 2020.

  12. Available from: https://impossiblefoods.com. Accessed on August 1 2020.

  13. Available from: https://www.nytimes.com/2019/12/03/well/eat/fake-meat-vs-real-meat.html. Accessed on August 1 2020.

  14. Available from: https://www.mosameat.com/. Accessed on August 1 2020.

  15. Available from: https://www.zionmarketresearch.com/news/plant-based-meat-market. Accessed on August 1 2020.

  16. Sadler MJ. Meat alternatives—market developments and health benefits. Trends Food Sci Technol. 2004;15(5):250–60.

    Article  CAS  Google Scholar 

  17. Available from: https://www.memphismeats.com. Accessed on August 1 2020.

  18. van der Weele C, Feindt P, van der Goot AJ, van Mierlo B, van Boekel M. Meat alternatives: an integrative comparison. Trends Food Sci Technol. 2019;88:505–12.

    Article  CAS  Google Scholar 

  19. Ong S, Choudhury D, Naing MW. Cell-based meat: current ambiguities with nomenclature. Trends Food Sci Technol. 2020;102:223–31.

    Article  CAS  Google Scholar 

  20. Hu FB, Otis BO, McCarthy G. Can plant-based meat alternatives be part of a healthy and sustainable diet? Jama. 2019;322(16):1547–8.

    Article  PubMed  Google Scholar 

  21. Curtain F, Grafenauer S. Plant-based meat substitutes in the flexitarian age: an audit of products on supermarket shelves. Nutrients. 2019;11(11):2603.

    Article  CAS  PubMed Central  Google Scholar 

  22. •• Godfray HCJ, Aveyard P, Garnett T, Hall JW, Key TJ, Lorimer J, et al. Meat consumption, health, and the environment. Science. 2018;361(6399) Of major Importance. A systematic review focusing on meat consumption, human health and environmental impact.

  23. Piazza J, Ruby MB, Loughnan S, Luong M, Kulik J, Watkins HM, et al. Rationalizing meat consumption. The 4Ns. Appetite. 2015;91:114–28.

    Article  PubMed  Google Scholar 

  24. •• Willett W, Rockström J, Loken B, Springmann M, Lang T, Vermeulen S, et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet. 2019;393(10170):447–92 Of major importance. A systematic review from the EAT–Lancet Commission focusing on healthy diets from sustainable food systems.

    Article  PubMed  Google Scholar 

  25. Kearney J. Food consumption trends and drivers. Philos Trans R Soc Lond Ser B Biol Sci. 2010;365(1554):2793–807.

    Article  Google Scholar 

  26. Food and Agriculture Organization of the United Nations - OECD-FAO agricultural outlook 2016-2025. OECD Publishing, 2016. Food and Agriculture Organization of the United Nations. Accessed on August 1 2020.

  27. •• Afshin A, Sur PJ, Fay KA, Cornaby L, Ferrara G, Salama JS, et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393(10184):1958–72 Of major Importance. A systematic review analyzing the health effects of dietary risks in 195 countries.

    Article  Google Scholar 

  28. Available from: https://www.3dnatives.com/en/3d-printed-meat-040620194/#!. Accessed on August 1 2020.

  29. Food and Agriculture Organization (FAO) of the United Nations. Available from: http://www.fao.org/news/story/en/item/197646/icode/. Accessed on August 1 2020.

  30. Tuomisto HL. The eco-friendly burger: could cultured meat improve the environmental sustainability of meat products? EMBO Rep. 2019;20(1):e47395.

    Article  CAS  PubMed  Google Scholar 

  31. Tilman D, Clark M. Global diets link environmental sustainability and human health. Nature. 2014;515(7528):518–22.

    Article  CAS  PubMed  Google Scholar 

  32. Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, et al. Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities: food and agriculture Organization of the United Nations (FAO); 2013. Available from: http://www.fao.org/3/a-i3437e.pdf. Accessed on August 1 2020.

  33. Available from: https://www.vegansociety.com/news/media/statistics. Accessed on August 1 2020.

  34. Aleksandrowicz L, Green R, Joy EJ, Smith P, Haines A. The impacts of dietary change on greenhouse gas emissions, land use, water use, and health: a systematic review. PLoS One. 2016;11(11):e0165797.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Pimentel D, Pimentel M. Sustainability of meat-based and plant-based diets and the environment. Am J Clin Nutr. 2003;78(3):660S–3S.

    Article  CAS  PubMed  Google Scholar 

  36. Bouvard V, Loomis D, Guyton KZ, Grosse Y, Ghissassi FE, Benbrahim-Tallaa L, et al. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015;16(16):1599–600.

    Article  PubMed  Google Scholar 

  37. Aune D, Chan DS, Vieira AR, Navarro Rosenblatt DA, Vieira R, Greenwood DC, et al. Red and processed meat intake and risk of colorectal adenomas: a systematic review and meta-analysis of epidemiological studies. Cancer Causes Control. 2013;24(4):611–27.

    Article  PubMed  Google Scholar 

  38. Schwingshackl L, Schwedhelm C, Hoffmann G, Lampousi AM, Knuppel S, Iqbal K, et al. Food groups and risk of all-cause mortality: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr. 2017;105(6):1462–73.

    CAS  PubMed  Google Scholar 

  39. Jeyakumar A, Dissabandara L, Gopalan V. A critical overview on the biological and molecular features of red and processed meat in colorectal carcinogenesis. J Gastroenterol. 2017;52(4):407–18.

    Article  CAS  PubMed  Google Scholar 

  40. Wolk A. Potential health hazards of eating red meat. J Intern Med. 2017;281(2):106–22.

    Article  CAS  PubMed  Google Scholar 

  41. Boada LD, Henríquez-Hernández LA, Luzardo O. The impact of red and processed meat consumption on cancer and other health outcomes: epidemiological evidences. Food Chem Toxicol. 2016;92:236–44.

    Article  CAS  PubMed  Google Scholar 

  42. Grundy A, Poirier AE, Khandwala F, McFadden A, Friedenreich CM, Brenner DR. Cancer incidence attributable to red and processed meat consumption in Alberta in 2012. CMAJ open. 2016;4(4):E768–75.

    Article  PubMed  PubMed Central  Google Scholar 

  43. IARC Monographs evaluate consumption of red and processed meat. World Food Regulation Review 2015;25(6):30. Available from: https://search.proquest.com/openview/eaa3379e623b234c0905e5b6ab4c6aef/1?pq-origsite=gscholar&cbl=2029995). Accessed on August 1 2020.

  44. Fretts AM, Follis JL, Nettleton JA, Lemaitre RN, Ngwa JS, Wojczynski MK, et al. Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: a meta-analysis of 50,345 Caucasians. Am J Clin Nutr. 2015;102(5):1266–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Feskens EJ, Sluik D, van Woudenbergh GJ. Meat consumption, diabetes, and its complications. Current diabetes reports. 2013;13(2):298–306.

    Article  CAS  PubMed  Google Scholar 

  46. Micha R, Sarah K, Wallace, Mozaffarian D. “Clinical Perspective” Red and processed meat consumption and risk of incident coronary heart disease, stroke, and diabetes mellitus A systematic review and meta-analysis. Circulation. 2010;121(21):2271–83.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lew Q-LJ, Jafar TH, Koh HWL, Jin A, Chow KY, Yuan J-M, et al. Red meat intake and risk of ESRD. J Am Soc Nephrol. 2017;28(1):304–12.

    Article  PubMed  Google Scholar 

  48. Siri-Tarino PW, Sun Q, Hu FB, Krauss RM. Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. Am J Clin Nutr. 2010;91(3):535–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. O’Connor LE, Kim JE, Campbell WW. Total red meat intake of≥ 0.5 servings/d does not negatively influence cardiovascular disease risk factors: a systemically searched meta-analysis of randomized controlled trials. Am J Clin Nutr. 2017;105(1):57–69.

    Article  PubMed  CAS  Google Scholar 

  50. Available from: https://progressreport.cancer.gov/prevention/red_meat.html. Accessed on August 1 2020.

  51. Available from: https://thebeet.com/ultimate-guide-fake-meat-vs-real-meat/. Accessed on August 1 2020.

  52. Fraser RZ, Shitut M, Agrawal P, Mendes O, Klapholz S. Safety evaluation of soy leghemoglobin protein preparation derived from Pichia pastoris, intended for use as a flavor catalyst in plant-based meat. Int J Toxicol. 2018;37(3):241–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Asgar M, Fazilah A, Huda N, Bhat R, Karim A. Nonmeat protein alternatives as meat extenders and meat analogs. Compr Rev Food Sci Food Saf. 2010;9(5):513–29.

    Article  CAS  PubMed  Google Scholar 

  54. Finnigan T, Needham L, Abbott C. Mycoprotein: a healthy new protein with a low environmental impact. In: Nadathur SRWJPD, Scanlin L, editors. Sustainable protein sources: Elsevier: Academic Press; 2017. p. 305–25. https://doi.org/10.1016/B978-0-12-802778-3.00019-6.

  55. Denny A, Aisbitt B, Lunn J. Mycoprotein and health. Nutr Bull. 2008;33(4):298–310.

    Article  Google Scholar 

  56. Udall JN, Lo CW, Young VR, Scrimshaw NS. The tolerance and nutritional value of two microfungal foods in human subjects. Am J Clin Nutr. 1984;40(2):285–92.

    Article  CAS  PubMed  Google Scholar 

  57. Turnbull WH, Leeds AR, Edwards DG. Mycoprotein reduces blood lipids in free-living subjects. Am J Clin Nutr. 1992;55(2):415–9.

    Article  CAS  PubMed  Google Scholar 

  58. Turnbull WH, Leeds AR, Edwards GD. Effect of mycoprotein on blood lipids. Am J Clin Nutr. 1990;52(4):646–50.

    Article  CAS  PubMed  Google Scholar 

  59. Nakamura H, Ishikawa T, Akanuma M, Nishiwaki M, Yamashita T, Tomiyasu K, et al. Effect of mycoprotein intake on serum lipids of healthy subjects. Prog Med. 1994;14(7):1972–6.

    Google Scholar 

  60. Ruxton CH, McMillan B. The impact of mycoprotein on blood cholesterol levels: a pilot study. Br Food J. 2010;112(10):1092–101.

    Article  Google Scholar 

  61. Homma Y, Nakamura H, Kumagai Y, Ryuzo A, Saito Y, Ishikawa T, et al. Effects of eight week ingestion of mycoprotein on plasma levels of lipids and Apo (Lipo) proteins. Prog Med. 1995;15(3):183–95.

    Google Scholar 

  62. Ishikawa T. The effect of mycoprotein intake (12 and 24g/day) over four weeks on serum cholesterol levels. Prog Med. 1995;15(1):61–74.

    Google Scholar 

  63. EFSA Panel on Dietetic Products N. Allergies. Scientific opinion on the substantiation of health claims related to mycoprotein and maintenance of normal blood LDL-cholesterol concentrations (ID 1619) and increase in satiety leading to a reduction in energy intake (ID 1620) pursuant to Article 13 (1) of Regulation (EC) No 1924/2006. EFSA J. 2011;9(4):2042.

    Article  CAS  Google Scholar 

  64. DeFoliart G. Insect fatty acids: similar to those of poultry and fish in their degree of unsaturation, but higher in the polyunsaturates. Food Insects Newslett. 1991;4(1):1–4.

    Google Scholar 

  65. Schabel HG. Forest insects as food: a global review. Forest insects as food: Humans bite back. 2010:37–64. Available from: http://www.fao.org/3/a-i1380e.pdf. Accessed 1 Aug 2020.

  66. Christensen DL, Orech FO, Mungai MN, Larsen T, Friis H, Aagaard-Hansen J. Entomophagy among the Luo of Kenya: a potential mineral source? Int J Food Sci Nutr. 2006;57(3–4):198–203.

    Article  CAS  PubMed  Google Scholar 

  67. Alexander P, Brown C, Arneth A, Dias C, Finnigan J, Moran D, et al. Could consumption of insects, cultured meat or imitation meat reduce global agricultural land use? Global Food Security. 2017;15:22–32.

    Article  Google Scholar 

  68. Rumpold BA, Schlüter OK. Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Sci Emerg Technol. 2013;17:1–11.

    Article  CAS  Google Scholar 

  69. de Magistris T, Pascucci S, Mitsopoulos D. Paying to see a bug on my food: how regulations and information can hamper radical innovations in the European Union. Br Food J. 2015;117(6):1777–92.

    Article  Google Scholar 

  70. Available from: http://www.fao.org/3/i3253e/i3253e.pdf. Accessed on August 1 2020.

  71. Sirimungkararat SSW, Nopparat T, Natongkham A. Edible products from eri and mulberry silkworms in Thailand. In: Durst PB, Johnson DV, Leslie RL, Shono K, editors. Forest insects as food: humans bite back. Proceedings of a workshop on Asia-Pacific resources and their potential for development, Chiang Mai, Thailand, 19-21 February, 2008: Food and Agriculture Organization (FAO) of the United Nations, Bangkok, FAO, Regional Office for Asia and the Pacific. 2010 pp.189–200 ref.16; 2010.

  72. Srivastava S, Babu N, Pandey H. Traditional insect bioprospecting–as human food and medicine. Indian J Tradit Knowl. 2009;8(4):485–94.

    Google Scholar 

  73. Sirimungkararat S, Saksirirat W, Nopparat T, Natongkham A. Edible products from eri and mulberry silkworms in Thailand. Forest insects as food: humans bite back. 2010:189. Available from: http://www.fao.org/3/a-i1380e.pdf. Accessed 1 Aug 2020.

  74. Oonincx DG, Van Itterbeeck J, Heetkamp MJ, Van Den Brand H, Van Loon JJ, Van Huis A. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLoS One. 2010;5(12):e14445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Oonincx D, de Boer I. Environmental impact of the production of mealworms as a protein source for humans–a life cycle. PLoS One. 2012;7(12):e51145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nishimune T, Watanabe Y, Okazaki H, Akai H. Thiamin is decomposed due to Anaphe spp. entomophagy in seasonal ataxia patients in Nigeria. J Nutr. 2000;130(6):1625–8.

    Article  CAS  PubMed  Google Scholar 

  77. Available from: https://essento.ch/en/. Accessed on August 1 2020.

  78. Post MJ. Cultured meat from stem cells: challenges and prospects. Meat Sci. 2012;92(3):297–301.

    Article  PubMed  Google Scholar 

  79. Chriki S, Hocquette J-F. The myth of cultured meat: a review. Front Nutr. 2020;7:7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Bhat ZF, Kumar S, Fayaz H. In vitro meat production: challenges and benefits over conventional meat production. J Integr Agric. 2015;14(2):241–8.

    Article  CAS  Google Scholar 

  81. Tuomisto HL, de Mattos MJ. Environmental impacts of cultured meat production. Environ Sci Technol. 2011;45(14):6117–23.

    Article  CAS  PubMed  Google Scholar 

  82. Fox JL. Test tube meat on the menu? Nat Biotechnol. 2009;27:873.

    Article  CAS  PubMed  Google Scholar 

  83. Bryant C, Barnett J. Consumer acceptance of cultured meat: a systematic review. Meat Sci. 2018;143:8–17.

    Article  PubMed  Google Scholar 

  84. Grunert KG, Verbeke W, Kügler JO, Saeed F, Scholderer J. Use of consumer insight in the new product development process in the meat sector. Meat Sci. 2011;89(3):251–8.

    Article  PubMed  Google Scholar 

  85. Verbeke W, Marcu A, Rutsaert P, Gaspar R, Seibt B, Fletcher D, et al. ‘Would you eat cultured meat?’: consumers’ reactions and attitude formation in Belgium, Portugal and the United Kingdom. Meat Sci. 2015;102:49–58.

    Article  PubMed  Google Scholar 

  86. Siegrist M, Sütterlin B. Importance of perceived naturalness for acceptance of food additives and cultured meat. Appetite. 2017;113:320–6.

    Article  PubMed  Google Scholar 

  87. Dick A, Bhandari B, Prakash S. 3D printing of meat. Meat Sci. 2019;153:35–44.

    Article  CAS  PubMed  Google Scholar 

  88. Dagevos H, Voordouw J. Sustainability and meat consumption: is reduction realistic? Sustainability: science. Practice and Policy. 2013;9(2):60–9.

    Google Scholar 

  89. Idel A, Fehlenberg V, Reichert T. Livestock production and food security in a context of climate change and environmental and health challenges. Trade and Environ Rev. 2013:138–53.

  90. Mouat MJ, Prince R, Roche MM. Making value out of ethics: the emerging economic geography of lab-grown meat and other animal-free food products. Econ Geogr. 2019;95(2):136–58.

    Article  Google Scholar 

  91. Gómez-Luciano CA, de Aguiar LK, Vriesekoop F, Urbano B. Consumers’ willingness to purchase three alternatives to meat proteins in the United Kingdom, Spain. Brazil and the Dominican Republic Food quality and preference. 2019;78:103732.

    Article  Google Scholar 

  92. Hoek AC, Luning PA, Weijzen P, Engels W, Kok FJ, de Graaf C. Replacement of meat by meat substitutes. A survey on person- and product-related factors in consumer acceptance. Appetite. 2011;56(3):662–73.

    Article  PubMed  Google Scholar 

  93. Bryant C, Szejda K, Parekh N, Desphande V, Tse B. A survey of consumer perceptions of plant-based and clean meat in the USA, India, and China. Front Sustain Food Syst. 2019;3:11.

    Article  Google Scholar 

  94. Verbeke W. Profiling consumers who are ready to adopt insects as a meat substitute in a Western society. Food Qual Prefer. 2015;39:147–55.

    Article  Google Scholar 

  95. Slade P. If you build it, will they eat it? Consumer preferences for plant-based and cultured meat burgers. Appetite. 2018;125:428–37.

    Article  PubMed  Google Scholar 

  96. Caparros Megido R, Sablon L, Geuens M, Brostaux Y, Alabi T, Blecker C, et al. Edible insects acceptance by Belgian consumers: promising attitude for entomophagy development. J Sens Stud. 2014;29(1):14–20.

    Article  Google Scholar 

  97. • Hall KD, Ayuketah A, Brychta R, Cai H, Cassimatis T, Chen KY, et al. Ultra-processed diets cause excess calorie intake and weight gain: an inpatient randomized controlled trial of ad libitum food intake. Cell Metab. 2019;30(1):67-77. e3 Of importance. A randomized controlled trial evaluating the effects of consumption of ultra-processed diets and excessive weight gain.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  98. Available from: https://seekingalpha.com/article/4355008-beyond-meat-may-be-bad-for-environment. Accessed on August 1 2020.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senthilkumar Sankararaman.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with humans or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Gastroenterology, Critical Care, and Lifestyle Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thavamani, A., Sferra, T.J. & Sankararaman, S. Meet the Meat Alternatives: The Value of Alternative Protein Sources. Curr Nutr Rep 9, 346–355 (2020). https://doi.org/10.1007/s13668-020-00341-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-020-00341-1

Keywords

Navigation