Skip to main content

Advertisement

Log in

Autoimmune Pulmonary Alveolar Proteinosis: A Review of Pathogenesis and Emerging Therapies

  • REVIEW
  • Published:
Current Pulmonology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Autoimmune pulmonary alveolar proteinosis is a heterogenous clinical syndrome of disordered surfactant clearance due to a dysfunctional granulocyte–macrophage colony-stimulating factor signaling axis in the setting of polyclonal autoantibody generation. Recent advancements identifying key mechanistic drivers of this disease have been made. This clinical review summarizes current knowledge of autoimmune pulmonary alveolar proteinosis with an emphasis on contemporary findings on pathogenesis and emerging therapies.

Recent Findings

A disturbed granulocyte–macrophage colony-stimulating factor signaling axis leads to downstream dysregulation of cholesterol export within alveolar macrophages. Accumulation of cholesterol impedes surfactant clearance and propagates the syndrome’s disease process.

Summary

Whole lung lavage therapy is an invasive procedure performed under general anesthesia which remains the standard of care for autoimmune pulmonary alveolar proteinosis. Augmentation of the defective signaling axis with recombinant human granulocyte-macrophage colony-stimulating factor is a promising treatment modality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ABCA1:

ATP binding cassette subfamily A member 1

ABCG1:

ATP binding cassette subfamily G member 1

A-aDO2 :

Alveolar-arterial oxygen gradient

DLCO:

Diffusing capacity for carbon monoxide

GM-CSF:

Granulocyte–macrophage colony-stimulating factor

PaO2:

Partial pressure of oxygen in the arterial blood

PAP:

Pulmonary alveolar proteinosis

PPAR-γ:

Peroxisome proliferator-activated receptor gamma

PU.1:

Purine-rich box1

6MWD:

6-Minute walk distance

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Miyashita K, Hozumi H, Inoue Y, Suzuki T, Suda T. Nationwide survey of adult patients with pulmonary alveolar proteinosis using the National Database of designated intractable diseases of Japan. Respir Investig. 2023;61:364–70. https://doi.org/10.1016/j.resinv.2023.02.011.

    Article  CAS  PubMed  Google Scholar 

  2. McCarthy C, Avetisyan R, Carey BC, Chalk C, Trapnell BC. Prevalence and healthcare burden of pulmonary alveolar proteinosis. Orphanet J Rare Dis. 2018;13:129. https://doi.org/10.1186/s13023-018-0846-y.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rosen SH, Castleman B, Liebow AA. Pulmonary alveolar proteinosis. N Engl J Med. 1958;258:1123–42. https://doi.org/10.1056/NEJM195806052582301.

    Article  CAS  PubMed  Google Scholar 

  4. Trapnell BC, Whitsett JA, Nakata K. Pulmonary alveolar proteinosis. N Engl J Med. 2003;349:2527–39. https://doi.org/10.1056/NEJMra023226.

    Article  CAS  PubMed  Google Scholar 

  5. • McCarthy C, Carey BC, Trapnell BC. Autoimmune Pulmonary Alveolar Proteinosis. Am J Respir Crit Care Med. 2022;205:1016–35. https://doi.org/10.1164/rccm.202112-2742SO. State of the art comprehensive review of autoimmune pulmonary alveolar proteinosis.

    Article  CAS  PubMed  Google Scholar 

  6. Inoue Y, Trapnell BC, Tazawa R, Arai T, Takada T, Hizawa N, et al. Characteristics of a large cohort of patients with autoimmune pulmonary alveolar proteinosis in Japan. Am J Respir Crit Care Med. 2008;177:752–62. https://doi.org/10.1164/rccm.200708-1271OC.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Han S, Mallampalli RK. The Role of Surfactant in Lung Disease and Host Defense against Pulmonary Infections. Ann Am Thorac Soc. 2015;12:765–74. https://doi.org/10.1513/AnnalsATS.201411-507FR.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gschwend J, Sherman SPM, Ridder F, Feng X, Liang H-E, Locksley RM, et al. Alveolar macrophages rely on GM-CSF from alveolar epithelial type 2 cells before and after birth. J Exp Med. 2021. https://doi.org/10.1084/jem.20210745.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schneider C, Nobs SP, Kurrer M, Rehrauer H, Thiele C, Kopf M. Induction of the nuclear receptor PPAR-γ by the cytokine GM-CSF is critical for the differentiation of fetal monocytes into alveolar macrophages. Nat Immunol. 2014;15:1026–37. https://doi.org/10.1038/ni.3005.

    Article  CAS  PubMed  Google Scholar 

  10. Wojcik AJ, Skaflen MD, Srinivasan S, Hedrick CC. A critical role for ABCG1 in macrophage inflammation and lung homeostasis. J Immunol. 2008;180:4273–82. https://doi.org/10.4049/jimmunol.180.6.4273.

    Article  CAS  PubMed  Google Scholar 

  11. Wang B, Tontonoz P. Liver X receptors in lipid signalling and membrane homeostasis. Nat Rev Endocrinol. 2018;14:452–63. https://doi.org/10.1038/s41574-018-0037-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Trapnell BC, Nakata K, Bonella F, Campo I, Griese M, Hamilton J, et al. Pulmonary alveolar proteinosis. Nat Rev Dis Primers. 2019;5:16. https://doi.org/10.1038/s41572-019-0066-3.

    Article  PubMed  Google Scholar 

  13. McCarthy C, Lee E, Bridges JP, Sallese A, Suzuki T, Woods JC, et al. Statin as a novel pharmacotherapy of pulmonary alveolar proteinosis. Nat Commun. 2018;9:3127. https://doi.org/10.1038/s41467-018-05491-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sakagami T, Uchida K, Suzuki T, Carey BC, Wood RE, Wert SE, et al. Human GM-CSF autoantibodies and reproduction of pulmonary alveolar proteinosis. N Engl J Med. 2009;361:2679–81. https://doi.org/10.1056/NEJMc0904077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dhagat U, Hercus TR, Broughton SE, Nero TL, Cheung Tung Shing KS, Barry EF, et al. The mechanism of GM-CSF inhibition by human GM-CSF auto-antibodies suggests novel therapeutic opportunities. MAbs. 2018;10:1018–29. https://doi.org/10.1080/19420862.2018.1494107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Uchida K. High-affinity autoantibodies specifically eliminate granulocyte-macrophage colony-stimulating factor activity in the lungs of patients with idiopathic pulmonary alveolar proteinosis. Blood. 2003;103:1089–98. https://doi.org/10.1182/blood-2003-05-1565.

    Article  CAS  PubMed  Google Scholar 

  17. Hwang JA, Song JH, Kim JH, Chung MP, Kim DS, Song JW, et al. Clinical significance of cigarette smoking and dust exposure in pulmonary alveolar proteinosis: a Korean national survey. BMC Pulm Med. 2017;17:147. https://doi.org/10.1186/s12890-017-0493-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Uchida K, Nakata K, Suzuki T, Luisetti M, Watanabe M, Koch DE, et al. Granulocyte/macrophage-colony-stimulating factor autoantibodies and myeloid cell immune functions in healthy subjects. Blood. 2009;113:2547–56. https://doi.org/10.1182/blood-2009-05-155689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Seymour JF, Doyle IR, Nakata K, Presneill JJ, Schoch OD, Hamano E, et al. Relationship of anti-GM-CSF antibody concentration, surfactant protein A and B levels, and serum LDH to pulmonary parameters and response to GM-CSF therapy in patients with idiopathic alveolar proteinosis. Thorax. 2003;58:252–7. https://doi.org/10.1136/thorax.58.3.252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ataya A, Knight V, Carey BC, Lee E, Tarling EJ, Wang T. The Role of GM-CSF Autoantibodies in Infection and Autoimmune Pulmonary Alveolar Proteinosis: A Concise Review. Front Immunol. 2021;12: 752856. https://doi.org/10.3389/fimmu.2021.752856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mabo A, Borie R, Wemeau-Stervinou L, Uzunhan Y, Gomez E, Prevot G, et al. Infections in autoimmune pulmonary alveolar proteinosis: a large retrospective cohort. Thorax. 2023;79:68–74. https://doi.org/10.1136/thorax-2023-220040.

    Article  PubMed  Google Scholar 

  22. Trapnell BC, Carey BC, Uchida K, Suzuki T. Pulmonary alveolar proteinosis, a primary immunodeficiency of impaired GM-CSF stimulation of macrophages. Curr Opin Immunol. 2009;21:514–21. https://doi.org/10.1016/j.coi.2009.09.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Trapnell BC, Whitsett JA. GM-CSF Regulates Pulmonary Surfactant Homeostasis and Alveolar Macrophage-Mediated Innate Host Defense. Annu Rev Physiol. 2002;64:775–802. https://doi.org/10.1146/annurev.physiol.64.090601.113847.

    Article  CAS  PubMed  Google Scholar 

  24. Campo I, Mariani F, Rodi G, Paracchini E, Tsana E, Piloni D, et al. Assessment and management of pulmonary alveolar proteinosis in a reference center. Orphanet J Rare Dis. 2013;8:40. https://doi.org/10.1186/1750-1172-8-40.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hawkins P, Chawke L, Cormican L, Wikenheiser-Brokamp KA, Fabre A, Keane MP, et al. Autoimmune pulmonary alveolar proteinosis: a discrepancy between symptoms and CT findings. Lancet. 2021;398: e7. https://doi.org/10.1016/S0140-6736(21)01254-X.

    Article  PubMed  Google Scholar 

  26. Seymour JF, Presneill JJ. Pulmonary alveolar proteinosis: progress in the first 44 years. Am J Respir Crit Care Med. 2002;166:215–35. https://doi.org/10.1164/rccm.2109105.

    Article  PubMed  Google Scholar 

  27. Punatar AD, Kusne S, Blair JE, Seville MT, Vikram HR. Opportunistic infections in patients with pulmonary alveolar proteinosis. J Infect. 2012;65:173–9. https://doi.org/10.1016/j.jinf.2012.03.020.

    Article  PubMed  Google Scholar 

  28. Mariani F, Infusino C, Lettieri S, Piloni D, Bosio M, De Silvestri A, et al. Lung fibrosis in Pulmonary Alveolar Proteinosis (PAP): different stages of a syndrome or distinct diseases? Rare ILD / DPLD. European Respiratory Society. 2021. https://doi.org/10.1183/13993003.congress-2021.PA2369.

    Article  Google Scholar 

  29. Hunt AN, Malur A, Monfort T, Lagoudakis P, Mahajan S, Postle AD, et al. Hepatic Steatosis Accompanies Pulmonary Alveolar Proteinosis. Am J Respir Cell Mol Biol. 2017;57:448–58. https://doi.org/10.1165/rcmb.2016-0242OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Seymour JF. Extra-pulmonary aspects of acquired pulmonary alveolar proteinosis as predicted by granulocyte-macrophage colony-stimulating factor-deficient mice. Respirology. 2006. https://doi.org/10.1111/j.1440-1843.2006.00801.x.

    Article  PubMed  Google Scholar 

  31. Da Nam B, Kim TJ, Chung MP, Chung MJ, Kim TS, Lee KS. CT findings in pulmonary alveolar proteinosis: serial changes and prognostic implications. J Thorac Dis. 2018;10:5774–83. https://doi.org/10.21037/jtd.2018.09.86.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fijołek J, Wiatr E, Radzikowska E, Bestry I, Langfort R, Polubiec-Kownacka M, et al. Pulmonary alveolar proteinosis during a 30-year observation. Diagnosis and treatment Pneumonol Alergol Pol. 2014;82:206–17. https://doi.org/10.5603/PiAP.2014.0028.

    Article  PubMed  Google Scholar 

  33. Uchida K, Nakata K, Carey B, Chalk C, Suzuki T, Sakagami T, et al. Standardized serum GM-CSF autoantibody testing for the routine clinical diagnosis of autoimmune pulmonary alveolar proteinosis. J Immunol Methods. 2014;402:57–70. https://doi.org/10.1016/j.jim.2013.11.011.

    Article  CAS  PubMed  Google Scholar 

  34. •• McCarthy C, Carey B, Trapnell BC. Blood Testing for Differential Diagnosis of Pulmonary Alveolar Proteinosis Syndrome. Chest. 2019;155:450–2. https://doi.org/10.1016/j.chest.2018.11.002. Paper highlighting the importance of blood GM-CSF testing in diagnosing autoimmune pulmonary alveolar proteinosis.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nakata K, Sugi T, Kuroda K, Yoshizawa K, Takada T, Tazawa R, et al. Validation of a new serum granulocyte-macrophage colony-stimulating factor autoantibody testing kit. ERJ Open Res. 2020. https://doi.org/10.1183/23120541.00259-2019.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Carey B, Chalk C, Stock J, Toth A, Klingler M, Greenberg H, et al. A dried blood spot test for diagnosis of autoimmune pulmonary alveolar proteinosis. J Immunol Methods. 2022;511: 113366. https://doi.org/10.1016/j.jim.2022.113366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Suzuki T, Sakagami T, Rubin BK, Nogee LM, Wood RE, Zimmerman SL, et al. Familial pulmonary alveolar proteinosis caused by mutations in CSF2RA. J Exp Med. 2008;205:2703–10. https://doi.org/10.1084/jem.20080990.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kusakabe Y, Uchida K, Hiruma T, Suzuki Y, Totsu T, Suzuki T, et al. A standardized blood test for the routine clinical diagnosis of impaired GM-CSF signaling using flow cytometry. J Immunol Methods. 2014;413:1–11. https://doi.org/10.1016/j.jim.2014.07.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Salvator H, Cheng A, Rosen LB, Williamson PR, Bennett JE, Kashyap A, et al. Neutralizing GM-CSF autoantibodies in pulmonary alveolar proteinosis, cryptococcal meningitis and severe nocardiosis. Respir Res. 2022;23:280. https://doi.org/10.1186/s12931-022-02103-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee E, Miller C, Ataya A, Wang T. Opportunistic Infection Associated With Elevated GM-CSF Autoantibodies: A Case Series and Review of the Literature. Open Forum Infect Dis. 2022;9:ofac146. https://doi.org/10.1093/ofid/ofac146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Campo I, Meloni F, Gahlemann M, Sauter W, Ittrich C, Schoelch C, et al. An exploratory study investigating biomarkers associated with autoimmune pulmonary alveolar proteinosis (aPAP). Sci Rep. 2022;12:8708. https://doi.org/10.1038/s41598-022-11446-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Campo I, Luisetti M, Griese M, Trapnell BC, Bonella F, Grutters J, et al. Whole lung lavage therapy for pulmonary alveolar proteinosis: a global survey of current practices and procedures. Orphanet J Rare Dis. 2016;11:115. https://doi.org/10.1186/s13023-016-0497-9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wayne MT, Ali MS, Roller L, Gay SE, Maldonado F, De Cardenas J. Safety of Bilateral Whole Lung Lavage for Pulmonary Alveolar Proteinosis. J Bronchology Interv Pulmonol. 2023;30:188–91. https://doi.org/10.1097/LBR.0000000000000897.

    Article  PubMed  Google Scholar 

  44. Mariani F, Salvaterra E, Lettieri S, De Silvestri A, Corino A, Bosio M, et al. A mini-whole lung lavage to treat autoimmune pulmonary alveolar proteinosis (PAP). Respir Res. 2022;23:60. https://doi.org/10.1186/s12931-022-01982-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ra SW, Park SE, Lee HK, Han IS, Park SH. Whole lung lavage using a rapid infusion system to treat a patient with pulmonary alveolar proteinosis. Yeungnam Univ J Med. 2020;37:67–72. https://doi.org/10.12701/yujm.2019.00360.

    Article  PubMed  Google Scholar 

  46. Gómez-Sánchez R, Santa-Teresa P, García López JJ, Duque P, García-Carreño J, Jaspe A. Pulmonary alveolar proteinosis treated with whole-lung lavage under veno-venous extracorporeal membrane oxygenation, clinical case series and review of the literature. Med Intensiva. 2024;48:59–61. https://doi.org/10.1016/j.medine.2023.11.005.

    Article  PubMed  Google Scholar 

  47. Bonella F, Bauer PC, Griese M, Wessendorf TE, Guzman J, Costabel U. Wash-out kinetics and efficacy of a modified lavage technique for alveolar proteinosis. Eur Respir J. 2012;40:1468–74. https://doi.org/10.1183/09031936.00017612.

    Article  PubMed  Google Scholar 

  48. Kinthala S, Liang M, Khusid F, Harrison S. The Use of High-Frequency Percussive Ventilation for Whole-Lung Lavage: A Case Report. A A Pract. 2018;11:205–7. https://doi.org/10.1213/XAA.0000000000000778.

    Article  PubMed  Google Scholar 

  49. McCarthy C, Bartholmai BJ, Woods JC, McCormack FX, Trapnell BC. Automated Parenchymal Pattern Analysis of Treatment Responses in Pulmonary Alveolar Proteinosis. Am J Respir Crit Care Med. 2019;199:1151–2. https://doi.org/10.1164/rccm.201810-1918IM.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang H-T, Wang C, Wang C-Y, Fang S-C, Xu B, Zhang Y-M. Efficacy of Whole-Lung Lavage in Treatment of Pulmonary Alveolar Proteinosis. Am J Ther. 2016;23:e1671–9. https://doi.org/10.1097/MJT.0000000000000239.

    Article  PubMed  Google Scholar 

  51. Kaenmuang P, Navasakulpong A. Efficacy of whole lung lavage in pulmonary alveolar proteinosis: a 20-year experience at a reference center in Thailand. J Thorac Dis. 2021;13:3539–48. https://doi.org/10.21037/jtd-20-3308.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kiani A, Parsa T, Adimi Naghan P, Dutau H, Razavi F, Farzanegan B, et al. An eleven-year retrospective cross-sectional study on pulmonary alveolar proteinosis. Adv Respir Med. 2018;86:7–12. https://doi.org/10.5603/ARM.2018.0003.

    Article  PubMed  Google Scholar 

  53. Chuang C-H, Cheng C-H, Tsai Y-C, Tsai M-J, Sheu C-C, Chong I-W. Pulmonary alveolar proteinosis in Taiwan. J Formos Med Assoc. 2023;122:1061–8. https://doi.org/10.1016/j.jfma.2023.04.002.

    Article  PubMed  Google Scholar 

  54. Seymour JF, Dunn AR, Vincent JM, Presneill JJ, Pain MC. Efficacy of Granulocyte-Macrophage Colony-Stimulating Factor in Acquired Alveolar Proteinosis. N Engl J Med. 1996;335:1924–5. https://doi.org/10.1056/NEJM199612193352513.

    Article  CAS  PubMed  Google Scholar 

  55. Kavuru MS, Sullivan EJ, Piccin R, Thomassen MJ, Stoller JK. Exogenous Granulocyte-Macrophage Colony-Stimulating Factor Administration for Pulmonary Alveolar Proteinosis. Am J Respir Crit Care Med. 2000;161:1143–8. https://doi.org/10.1164/ajrccm.161.4.9906044.

    Article  CAS  PubMed  Google Scholar 

  56. Seymour JF, Presneill JJ, Schoch OD, Downie GH, Moore PE, Doyle IR, et al. Therapeutic efficacy of granulocyte-macrophage colony-stimulating factor in patients with idiopathic acquired alveolar proteinosis. Am J Respir Crit Care Med. 2001;163:524–31. https://doi.org/10.1164/ajrccm.163.2.2003146.

    Article  CAS  PubMed  Google Scholar 

  57. Venkateshiah SB, Yan TD, Bonfield TL, Thomassen MJ, Meziane M, Czich C, et al. An Open-Label Trial of Granulocyte Macrophage Colony Stimulating Factor Therapy for Moderate Symptomatic Pulmonary Alveolar Proteinosis. Chest. 2006;130:227–37. https://doi.org/10.1378/chest.130.1.227.

    Article  CAS  PubMed  Google Scholar 

  58. Khan A, Agarwal R, Aggarwal AN, Bal A, Sen I, Yaddanapuddi LN, et al. Experience with treatment of pulmonary alveolar proteinosis from a tertiary care centre in north India. Indian J Chest Dis Allied Sci. 2012;54:91–7.

    CAS  PubMed  Google Scholar 

  59. Hadda V, Tiwari P, Madan K, Mohan A, Gupta N, Bharti S, et al. Pulmonary alveolar proteinosis: Experience from a tertiary care center and systematic review of Indian literature. Lung India. 2016;33:626. https://doi.org/10.4103/0970-2113.192876.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Arai T, Hamano E, Inoue Y, Ryushi T, Nukiwa T, Sakatani M, et al. Serum neutralizing capacity of GM-CSF reflects disease severity in a patient with pulmonary alveolar proteinosis successfully treated with inhaled GM-CSF. Respir Med. 2004;98:1227–30. https://doi.org/10.1016/j.rmed.2004.08.011.

    Article  PubMed  Google Scholar 

  61. Tazawa R, Hamano E, Arai T, Ohta H, Ishimoto O, Uchida K, et al. Granulocyte-Macrophage Colony-Stimulating Factor and Lung Immunity in Pulmonary Alveolar Proteinosis. Am J Respir Crit Care Med. 2005;171:1142–9. https://doi.org/10.1164/rccm.200406-716OC.

    Article  PubMed  Google Scholar 

  62. Wylam ME. Aerosol granulocyte-macrophage colony-stimulating factor for pulmonary alveolar proteinosis. Eur Respir J. 2006;27:585–93. https://doi.org/10.1183/09031936.06.00058305.

    Article  CAS  PubMed  Google Scholar 

  63. Tazawa R, Trapnell BC, Inoue Y, Arai T, Takada T, Nasuhara Y, et al. Inhaled Granulocyte/Macrophage–Colony Stimulating Factor as Therapy for Pulmonary Alveolar Proteinosis. Am J Respir Crit Care Med. 2010;181:1345–54. https://doi.org/10.1164/rccm.200906-0978OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ohashi K, Sato A, Takada T, Arai T, Nei T, Kasahara Y, et al. Direct evidence that GM-CSF inhalation improves lung clearance in pulmonary alveolar proteinosis. Respir Med. 2012;106:284–93. https://doi.org/10.1016/j.rmed.2011.10.019.

    Article  PubMed  Google Scholar 

  65. Papiris SA, Tsirigotis P, Kolilekas L, Papadaki G, Papaioannou AI, Triantafillidou C, et al. Long-Term Inhaled Granulocyte Macrophage–Colony-Stimulating Factor in Autoimmune Pulmonary Alveolar Proteinosis: Effectiveness, Safety, and Lowest Effective Dose. Clin Drug Investig. 2014;34:553–64. https://doi.org/10.1007/s40261-014-0208-z.

    Article  CAS  PubMed  Google Scholar 

  66. Campo I, Mariani F, Paracchini E, Kadija Z, Zorzetto M, Tinelli C, et al. Inhaled sargramostim and whole lung lavage (WLL) as therapy of autoimmune pulmonary alveolar proteinosis (aPAP). Diffuse Parenchymal Lung Disease European Respiratory Society. 2016. https://doi.org/10.1183/13993003.congress-2016.PA3870.

    Article  Google Scholar 

  67. Ohkouchi S, Akasaka K, Ichiwata T, Hisata S, Iijima H, Takada T, et al. Sequential Granulocyte-Macrophage Colony-Stimulating Factor Inhalation after Whole-Lung Lavage for Pulmonary Alveolar Proteinosis A Report of Five Intractable Cases. Ann Am Thorac Soc. 2017;14:1298–304. https://doi.org/10.1513/AnnalsATS.201611-892BC.

    Article  PubMed  Google Scholar 

  68. Tazawa R, Ueda T, Abe M, Tatsumi K, Eda R, Kondoh S, et al. Inhaled GM-CSF for Pulmonary Alveolar Proteinosis. N Engl J Med. 2019;381:923–32. https://doi.org/10.1056/NEJMoa1816216.

    Article  CAS  PubMed  Google Scholar 

  69. Zhen G, Li D, Jiang J, Weng Y. Granulocyte-Macrophage Colony-Stimulating Factor Inhalation Therapy for Severe Pulmonary Alveolar Proteinosis. Am J Ther. 2020;28:e171–8. https://doi.org/10.1097/MJT.0000000000001053.

    Article  PubMed  Google Scholar 

  70. Tian X, Yang Y, Chen L, Sui X, Xu W, Li X, et al. Inhaled granulocyte-macrophage colony stimulating factor for mild-to-moderate autoimmune pulmonary alveolar proteinosis - a six month phase II randomized study with 24 months of follow-up. Orphanet J Rare Dis. 2020;15:174. https://doi.org/10.1186/s13023-020-01450-4.

    Article  PubMed  PubMed Central  Google Scholar 

  71. •• Trapnell BC, Inoue Y, Bonella F, Morgan C, Jouneau S, Bendstrup E, et al. Inhaled Molgramostim Therapy in Autoimmune Pulmonary Alveolar Proteinosis. N Engl J Med. 2020;383:1635–44. https://doi.org/10.1056/NEJMoa1913590. The largest randomized clinical trial in autoimmune PAP to date showing inhaled GM-CSF therapy was superior to placebo in improving multiple endpoints including change in arterial-alveolar gradient and diffusion capacity to carbon monoxide (DLCO).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Livingstone C, Corallo C, Siemienowicz M, Pilcher D, Stirling RG. Nebulised sargramostim in pulmonary alveolar proteinosis. Br J Clin Pharmacol. 2022;88:3523–8. https://doi.org/10.1111/bcp.15266.

    Article  PubMed  Google Scholar 

  73. Tazawa R, Inoue Y, Arai T, Takada T, Kasahara Y, Hojo M, et al. Duration of Benefit in Patients With Autoimmune Pulmonary Alveolar Proteinosis After Inhaled Granulocyte-Macrophage Colony-Stimulating Factor Therapy. Chest. 2014;145:729–37. https://doi.org/10.1378/chest.13-0603.

    Article  CAS  PubMed  Google Scholar 

  74. Sheng G, Chen P, Wei Y, Chu J, Cao X, Zhang H-L. Better approach for autoimmune pulmonary alveolar proteinosis treatment: inhaled or subcutaneous granulocyte-macrophage colony-stimulating factor: a meta-analyses. Respir Res. 2018;19:163. https://doi.org/10.1186/s12931-018-0862-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang F, Weng D, Su Y, Yin C, Shen L, Zhang Y, et al. Therapeutic effect of subcutaneous injection of low dose recombinant human granulocyte-macrophage colony-stimulating factor on pulmonary alveolar proteinosis. Respir Res. 2020;21:1. https://doi.org/10.1186/s12931-019-1261-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Munsif M, Sweeney D, Leong TL, Stirling RG. Nebulised granulocyte–macrophage colony-stimulating factor (GM-CSF) in autoimmune pulmonary alveolar proteinosis: a systematic review and meta-analysis. Eur Respir Rev. 2023;32: 230080. https://doi.org/10.1183/16000617.0080-2023.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Campo I, Carey BC, Paracchini E, Kadija Z, De Silvestri A, Rodi G, et al. Inhaled recombinant GM-CSF reduces the need for whole lung lavage and improves gas exchange in autoimmune pulmonary alveolar proteinosis patients. Eur Respir J. 2024. https://doi.org/10.1183/13993003.01233-2023.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Trapnell BC, McCarthy C. The Alveolar Lipidome in Pulmonary Alveolar Proteinosis. A New Target for Therapeutic Development? Am J Respir Crit Care Med. 2019;200:800–2. https://doi.org/10.1164/rccm.201905-1009ED.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yan X, Gao Y, Zhao Q, Qiu X, Tian M, Dai J, et al. Correlation of Lipid Ratios With the Severity of Pulmonary Alveolar Proteinosis: A Cross-Sectional Study. Front Nutr. 2021. https://doi.org/10.3389/fnut.2021.610765.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Griese M, Bonella F, Costabel U, de Blic J, Tran N-B, Liebisch G. Quantitative Lipidomics in Pulmonary Alveolar Proteinosis. Am J Respir Crit Care Med. 2019;200:881–7. https://doi.org/10.1164/rccm.201901-0086OC.

    Article  CAS  PubMed  Google Scholar 

  81. Shi S, Wang R, Chen L, Li Y, Zhang Y, Xin X, et al. Long-term follow-up and successful treatment of pulmonary alveolar proteinosis without hypercholesterolemia with statin therapy: a case report. J Int Med Res. 2021;49:3000605211010046. https://doi.org/10.1177/03000605211010046.

    Article  PubMed  Google Scholar 

  82. Takano T, Takeda K, Nakamura S, Akiyama G, Ando N, Komori M. A case of autoimmune pulmonary alveolar proteinosis with severe respiratory failure treated with segmental lung lavage and oral statin therapy. Respir Med Case Rep. 2022;38: 101684. https://doi.org/10.1016/j.rmcr.2022.101684.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Shi S, Gui X, Ding J, Yang S, Xin X, Xu K, et al. Assessment of Statin Treatment for Pulmonary Alveolar Proteinosis without Hypercholesterolemia: A 12-Month Prospective, Longitudinal, and Observational Study. Biomed Res Int. 2022;2022:1589660. https://doi.org/10.1155/2022/1589660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shi S, Zou R, Chen L, Yang S, Xu K, Xin X, et al. Quantitative chest CT assessment of pulmonary alveolar proteinosis with deep learning: a real-world longitudinal study. Quant Imaging Med Surg. 2022;12:5394–403. https://doi.org/10.21037/qims-22-205.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Sallese A, Suzuki T, McCarthy C, Bridges J, Filuta A, Arumugam P, et al. Targeting cholesterol homeostasis in lung diseases. Sci Rep. 2017;7:10211. https://doi.org/10.1038/s41598-017-10879-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dupin C, Hurtado M, Cazes A, Taille C, Debray MP, Guenée C, et al. Pioglitazone in pulmonary alveolar proteinosis: promising first clinical experience. Respir Med Res. 2020;78: 100756. https://doi.org/10.1016/j.resmer.2020.100756.

    Article  CAS  PubMed  Google Scholar 

  87. Vis DC, Kelly MM, De Heuvel E, MacEachern PR. Reduction in Alveolar Macrophage Size in Refractory Autoimmune Pulmonary Alveolar Proteinosis After Treatment With Pioglitazone. J Bronchology Interv Pulmonol. 2020;27:219–22. https://doi.org/10.1097/LBR.0000000000000686.

    Article  PubMed  Google Scholar 

  88. Lee E, Williams KJ, McCarthy C, Bridges JP, Redente EF, de Aguiar Vallim TQ, et al. Alveolar macrophage lipid burden correlates with clinical improvement in patients with pulmonary alveolar proteinosis. J Lipid Res. 2024;65: 100496. https://doi.org/10.1016/j.jlr.2024.100496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Seabloom DE, Galbraith AR, Haynes AM, Antonides JD, Wuertz BR, Miller WA, et al. Safety and Preclinical Efficacy of Aerosol Pioglitazone on Lung Adenoma Prevention in A/J Mice. Cancer Prev Res (Phila). 2017;10:124–32. https://doi.org/10.1158/1940-6207.CAPR-16-0174.

    Article  CAS  PubMed  Google Scholar 

  90. Huang J, Lin Z, Lin J, Xie S, Xia S, Chen G, et al. Causal role of lipid metabolism in pulmonary alveolar proteinosis: an observational and mendelian randomisation study. Thorax. 2024;79:135–43. https://doi.org/10.1136/thorax-2023-220789.

    Article  PubMed  Google Scholar 

  91. Akasaka K, Tanaka T, Kitamura N, Ohkouchi S, Tazawa R, Takada T, et al. Outcome of corticosteroid administration in autoimmune pulmonary alveolar proteinosis: a retrospective cohort study. BMC Pulm Med. 2015;15:88. https://doi.org/10.1186/s12890-015-0085-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ishimoto H, Sakamoto N, Yura H, Hara A, Kido T, Yamaguchi H, et al. Autoimmune pulmonary alveolar proteinosis exacerbated by steroid therapy due to misdiagnosis as anti-aminoacyl-tRNA synthetase (ARS) antibody positive- interstitial pneumonia: a case report. BMC Pulm Med. 2022;22:120. https://doi.org/10.1186/s12890-022-01909-z.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Asami-Noyama M, Ito K, Harada M, Hisamoto Y, Kunihiro Y, Ikeda E, et al. A case of development of autoimmune pulmonary alveolar proteinosis during the treatment of hypersensitivity pneumonitis. Respir Med Case Rep. 2023;44: 101862. https://doi.org/10.1016/j.rmcr.2023.101862.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hirose M, Arai T, Sugimoto C, Takimoto T, Sugawara R, Minomo S, et al. B cell-activating factors in autoimmune pulmonary alveolar proteinosis. Orphanet J Rare Dis. 2021;16:115. https://doi.org/10.1186/s13023-021-01755-y.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Borie R, Debray M-P, Laine C, Aubier M, Crestani B. Rituximab therapy in autoimmune pulmonary alveolar proteinosis. Eur Respir J. 2009;33:1503–6. https://doi.org/10.1183/09031936.00160908.

    Article  CAS  PubMed  Google Scholar 

  96. Amital A, Dux S, Shitrit D, Shpilberg O, Kramer MR. Therapeutic effectiveness of rituximab in a patient with unresponsive autoimmune pulmonary alveolar proteinosis. Thorax. 2010;65:1025–6. https://doi.org/10.1136/thx.2010.140673.

    Article  PubMed  Google Scholar 

  97. Bird D, Evans J, Pahoff C. Rituximab rescue therapy for autoimmune pulmonary alveolar proteinosis. Respir Med Case Rep. 2022;37: 101637. https://doi.org/10.1016/j.rmcr.2022.101637.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kavuru MS, Malur A, Marshall I, Barna BP, Meziane M, Huizar I, et al. An open-label trial of rituximab therapy in pulmonary alveolar proteinosis. Eur Respir J. 2011;38:1361–7. https://doi.org/10.1183/09031936.00197710.

    Article  CAS  PubMed  Google Scholar 

  99. Malur A, Kavuru MS, Marshall I, Barna BP, Huizar I, Karnekar R, et al. Rituximab therapy in pulmonary alveolar proteinosis improves alveolar macrophage lipid homeostasis. Respir Res. 2012;13:46. https://doi.org/10.1186/1465-9921-13-46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Soyez B, Borie R, Menard C, Cadranel J, Chavez L, Cottin V, et al. Rituximab for auto-immune alveolar proteinosis, a real life cohort study. Respir Res. 2018;19:74. https://doi.org/10.1186/s12931-018-0780-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kavuru MS, Bonfield TL, Thomassen MJ. Plasmapheresis, GM-CSF, and alveolar proteinosis. Am J Respir Crit Care Med. 2003;167:1036–7. https://doi.org/10.1164/ajrccm.167.7.950.

    Article  PubMed  Google Scholar 

  102. Luisetti M, Rodi G, Perotti C, Campo I, Mariani F, Pozzi E, et al. Plasmapheresis for treatment of pulmonary alveolar proteinosis. Eur Respir J. 2009;33:1220–2. https://doi.org/10.1183/09031936.00097508.

    Article  CAS  PubMed  Google Scholar 

  103. Garber B, Albores J, Wang T, Neville TH. A Plasmapheresis Protocol for Refractory Pulmonary Alveolar Proteinosis. Lung. 2015;193:209–11. https://doi.org/10.1007/s00408-014-9678-2.

    Article  CAS  PubMed  Google Scholar 

  104. Keske A, Destrampe EM, Barksdale B, Rose WN. Pulmonary Alveolar Proteinosis Refractory to Plasmapheresis and Rituximab despite GM-CSF Antibody Reduction. Case Reports Immunol. 2022;2022:2104270. https://doi.org/10.1155/2022/2104270.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Parker LA, Novotny DB. Recurrent alveolar proteinosis following double lung transplantation. Chest. 1997;111:1457–8. https://doi.org/10.1378/chest.111.5.1457.

    Article  CAS  PubMed  Google Scholar 

  106. Wang YB, Li FK, Ding ZD, Zhao K, Fang ZM, Feng M, et al. Lung transplantation for pulmonary alveolar proteinosis: a case report and literature review. Zhonghua Jie He He Hu Xi Za Zhi. 2022;45:667–70. https://doi.org/10.3760/cma.j.cn112147-20220302-00165.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None

Funding

This paper was not funded.

Author information

Authors and Affiliations

Authors

Contributions

Akash Mathavan and Akshay Mathavan performed literature review and drafted the manuscript. Swaminathan Perinkulam Sathyanarayanan and Cormac McCarthy assisted in literature review and drafted portions of the manuscript. Ali Ataya supervised the manuscript, provided subject matter expertise, revised the manuscript, and is responsible for the final content. All authors have agreed on the journal to which the article will be submitted, the final version for publication, and accountability for all aspects of the work.

Corresponding author

Correspondence to Ali Ataya.

Ethics declarations

Disclosures

AM, AM, SPS report no disclosures. CM reports consulting for Theravance and scientific advisory board consulting for Savara. AA reports scientific advisory board consulting for Savara and Partners Therapeutics.

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathavan, A., Mathavan, A., Sathyanarayanan, S.P. et al. Autoimmune Pulmonary Alveolar Proteinosis: A Review of Pathogenesis and Emerging Therapies. Curr Pulmonol Rep (2024). https://doi.org/10.1007/s13665-024-00356-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13665-024-00356-x

Keywords

Navigation