Skip to main content
Log in

Microstructural Features of Dissimilar Thin Sheets Aging Aluminum Alloy – Low Carbon Steel Joined by Friction Stir Welding

  • Peer-Reviewed Paper
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

An Author Correction to this article was published on 30 August 2022

This article has been updated

Abstract

The environmental crisis has raised serious concerns regarding fuel consumption, inciting a race to reduce vehicles’ weight. The design of structures combining different materials is a common factor in various industries, where the synergy between steel and aluminum is the starting point for many applications. Metallurgical challenges and the implementation of joining processes for thin sheets are some challenges that friction stir welding has overcome in the last two decades. In this manuscript, the methodology for joining aluminum alloy 6063-T5 and SAE 1020 steel, in thin sheets, employing friction stir welding, is presented. The research evaluated the offset in obtaining joints with complete joint penetration, heat generation, and microstructural changes. Joints with no defects were obtained, with a low thermal input, which favored the formation of tiny grain size in the stir zone, as well as an interface free of intermetallic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Change history

References

  1. M. Haghshenas, A.P. Gerlich, Joining of automotive sheet materials by friction-based welding methods: a review. Eng. Sci. Technol. Int. J. 21(1), 130–148 (2018)

    Google Scholar 

  2. M.M. Atabaki, M. Nikodinovski, P. Chenier, J. Ma, M. Harooni, R. Kovacevic, Welding of aluminum alloys to steels: an overview. J. Manuf. Sci. Prod. 14(2), 59–78 (2014)

    Google Scholar 

  3. S.W. Williams, Welding of airframes using friction stir. Air Space Eur. 3(3–4), 64–66 (2001)

    Article  Google Scholar 

  4. J. Tušek, Z. Kampuš, M. Suban, Welding of tailored blanks of different materials. J. Mater. Process. Technol. 119(1–3), 180–184 (2001)

    Article  Google Scholar 

  5. M. Parente, R. Safdarian, A.D. Santos, A. Loureiro, P. Vilaca, R.M.N. Jorge, A study on the formability of aluminum tailor welded blanks produced by friction stir welding. Int. J. Adv. Manuf. Technol. 83(9–12), 2129–2141 (2016)

    Article  Google Scholar 

  6. K. Mallieswaran, R. Padmanabhan, Effect of sheet thickness on the FSW parameters for dissimilar aluminium grades tailor welded blanks. Adv. Mater. Process. Technol. 7(1), 150–165 (2021)

    Google Scholar 

  7. Kusuda, Y.: Honda develops robotized FSW technology to weld steel and aluminum and applied it to a mass‐production vehicle. Ind. Robot Int. J. (2013)

  8. L.H. Shah, M. Ishak, Review of research progress on aluminum–steel dissimilar welding. Mater. Manuf. Process. 29(8), 928–933 (2014)

    Article  CAS  Google Scholar 

  9. S.A. Hussein, A.S.M. Tahir, A.B. Hadzley, Characteristics of aluminum-to-steel joint made by friction stir welding: a review. Mater. Today Commun. 5, 32–49 (2015)

    Article  CAS  Google Scholar 

  10. K.P. Mehta, A review on friction-based joining of dissimilar aluminum–steel joints. J. Mater. Res. 34(1), 78–96 (2019)

    Article  CAS  Google Scholar 

  11. A. Naumov, C. Mertin, F. Korte, G. Hirt, U. Reisgen, On the growth of intermetallic phases by heat treatment of friction stir welded aluminum steel joints. Prod. Eng. 11(2), 175–182 (2017)

    Article  Google Scholar 

  12. G.A. Edwards, K. Stiller, G.L. Dunlop, M.J. Couper, The precipitation sequence in Al–Mg–Si alloys. Acta Mater. 46(11), 3893–3904 (1998)

    Article  CAS  Google Scholar 

  13. A. Simar, Y. Bréchet, B. de Meester, A. Denquin, T. Pardoen, Sequential modeling of local precipitation, strength and strain hardening in friction stir welds of an aluminum alloy 6005A–T6. Acta Mater. 55(18), 6133–6143 (2007)

    Article  CAS  Google Scholar 

  14. M. Geiger, M. Merklein, U. Vogt, Aluminum tailored heat treated blanks. Prod. Eng. 3(4–5), 401–410 (2009)

    Article  Google Scholar 

  15. K. Sadmai, J. Kaewwichit, W. Roybang, N. Keawsakul, K. Kimapong, Microstructure and tensile strength of butt joint between AA6063 aluminum alloy and AISI304 stainless steel by friction stir welding. Int. J. Adv. Cult. Technol. 3(1), 179–187 (2015)

    Article  Google Scholar 

  16. M. Yılmaz, M. Çöl, M. Acet, Interface properties of aluminum/steel friction-welded components. Mater. Charact. 49(5), 421–429 (2002)

    Article  Google Scholar 

  17. Gendo, T., Nishiguchi, K., Asakawa, M., Tanioka, S.: Spot Friction Welding of Aluminum to Steel. Presented at the SAE World Congress & Exhibition, April 16 (2007)

  18. L. Wan, Y. Huang, Friction stir welding of dissimilar aluminum alloys and steels: a review. Int. J. Adv. Manuf. Technol. 99(5), 1781–1811 (2018)

    Article  Google Scholar 

  19. M. Pourali, A. Abdollah-zadeh, T. Saeid, F. Kargar, Influence of welding parameters on intermetallic compounds formation in dissimilar steel/aluminum friction stir welds. J. Alloys Compd. 715, 1–8 (2017)

    Article  CAS  Google Scholar 

  20. S. Bozzi, A.L. Helbert-Etter, T. Baudin, B. Criqui, J.G. Kerbiguet, Intermetallic compounds in Al 6016/IF-steel friction stir spot welds. Mater. Sci. Eng. A. 527(16–17), 4505–4509 (2010)

    Article  Google Scholar 

  21. H. Springer, A. Kostka, J.F. dos Santos, D. Raabe, Influence of intermetallic phases and kirkendall-porosity on the mechanical properties of joints between steel and aluminium alloys. Mater. Sci. Eng. A. 528(13–14), 4630–4642 (2011)

    Article  Google Scholar 

  22. Kreimeyer, M., Sepold, G.: Laser steel joined aluminium-hybrid structures. In: Proceedings of International Congress on Applications of Lasers and Electro-Optics 2002 (ICALEO’02). , Jacksonville, USA (2002)

  23. R. Borrisutthekul, T. Yachi, Y. Miyashita, Y. Mutoh, Suppression of intermetallic reaction layer formation by controlling heat flow in dissimilar joining of steel and aluminum alloy. Mater. Sci. Eng. A. 467(1), 108–113 (2007)

    Article  Google Scholar 

  24. C. Dharmendra, K.P. Rao, J. Wilden, S. Reich, Study on laser welding–brazing of zinc coated steel to aluminum alloy with a zinc based filler. Mater. Sci. Eng. A. 528(3), 1497–1503 (2011)

    Article  Google Scholar 

  25. H. Shi, S. Qiao, R. Qiu, X. Zhang, H. Yu, Effect of welding time on the joining phenomena of diffusion welded joint between aluminum alloy and stainless steel. Mater. Manuf. Process. 27(12), 1366–1369 (2012)

    Article  CAS  Google Scholar 

  26. N.R. Jesudoss Hynes, P. Nagaraj, J.A. Jennifa Sujana, Investigation on joining of aluminum and mild steel by friction stud welding. Mater. Manuf. Process. 27(12), 1409–1413 (2012)

    Article  CAS  Google Scholar 

  27. M.W. Safeen, P. Russo Spena, Main issues in quality of friction stir welding joints of aluminum alloy and steel sheets. Metals. 9(5), 610 (2019)

    Article  CAS  Google Scholar 

  28. T.F. Santos, E.A. Torres, T.F. Hermengildo, A.J. Ramirez, Development of ceramic backing for friction stir welding and processing. Weld. Int. 30(5), 338–347 (2016)

    Article  Google Scholar 

  29. T.F. Hermenegildo, A.C.S. Silva, E.A. Torres, T.F. Santos, A.J. Ramirez, Desenvolvimento dos parâmetros do processo de soldagem por atrito com pino não consumível para o aço de alta resistência e baixa liga ISO 3183 X80Ma. Soldag. Insp. 22, 129–138 (2017)

    Article  Google Scholar 

  30. L.Y. Wei, T.W. Nelson, Correlation of microstructures and process variables in FSW HSLA-65 steel. Weld. J. 90(1–3), 95s–101s (2011)

    Google Scholar 

  31. B. Heinz, B. Skrotzki, Characterization of a friction-stir-welded aluminum alloy 6013. Metall. Mater. Trans. B. 33(3), 489–498 (2002)

    Article  Google Scholar 

  32. Warmuzek, M.: Metallographic Techniques for Aluminum and Its Alloys. In: Vander Voort, G.F. (ed.) Metallography and Microstructures. pages 711–751. ASM International (2004)

  33. J. Arbeláez, D.A. Hincapié, E. Torres, A.J. Ramírez, Caracterización de aleación de aluminio AA6063-T5 mediante microscopía óptica, electrónica de barrido y electrónica de transmisión. Rev. Colomb. Mater. 5, 59–64 (2014)

    Google Scholar 

  34. E.A. Torres, A.J. Ramirez, União de juntas dissimilares alumínio-aço de chapas finas pelo processo de soldagem por atrito com pino não consumível (SAPNC). Soldag. Insp. 16, 265–273 (2011)

    Article  CAS  Google Scholar 

  35. E.A.T. López, A.J. Ramirez, Effect of processing parameters in obtaining consolidated joints and in the microstructure in aluminum-steel joints welded by friction stir welding (FSW). Soldag. Insp. 18, 245–256 (2013)

    Article  Google Scholar 

  36. B.S. Kulkarni, S.B. Pankade, S.R. Andhale, C.L. Gogte, Effect of backing plate material diffusivity on microstructure, mechanical properties of friction stir welded joints: a review. Procedia Manuf. 20, 59–64 (2018)

    Article  Google Scholar 

  37. I. Zybin, K. Trukhanov, A. Tsarkov, S. Kheylo, Backing plate effect on temperature controlled FSW process. MATEC Web Conf. 224, 01084 (2018)

    Article  CAS  Google Scholar 

  38. E.A. Torres, J. Graciano-Uribe, T.F. de SantosA, Control of steel detachment and metal flow on aluminum-steel friction stir welding of thin joints. Int. J. Eng. 34(4), 1024–1034 (2021)

    Google Scholar 

  39. Yasui, T.: Friction stir welding between aluminum and steel with high welding speed. In: Proceedings of 5th International Symposium on Friction Stir Welding. , Metz (2004)

  40. Jiang, W.H., Kovacevic, R.: Feasibility study of friction stir welding of 6061-T6 aluminium alloy with AISI 1018 steel. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 218 10 1323 1331 (2004)

  41. Y.S. Sato, M. Urata, H. Kokawa, Parameters controlling microstructure and hardness during friction-stir welding of precipitation-hardenable aluminum alloy 6063. Metall. Mater. Trans. A. 33(3), 625–635 (2002)

    Article  Google Scholar 

  42. S. Sheikhi, J.F. dos Santos, Effect of process parameter on mechanical properties of friction stir welded tailored blanks from aluminium alloy 6181–T4. Sci. Technol. Weld. Join. 12(4), 370–375 (2007)

    Article  CAS  Google Scholar 

  43. L. Cui, H. Fujii, N. Tsuji, K. Nogi, Friction stir welding of a high carbon steel. Scr. Mater. 56(7), 637–640 (2007)

    Article  CAS  Google Scholar 

  44. T.F.A. Santos, T.F.C. Hermenegildo, C.R.M. Afonso, R.R. Marinho, M.T.P. Paes, A.J. Ramirez, Fracture toughness of ISO 3183 X80M (API 5L X80) steel friction stir welds. Eng. Fract. Mech. 77(15), 2937–2945 (2010)

    Article  Google Scholar 

  45. T.J. Lienert, W.L. Stellwag Jr., B.B. Grimmett, R.W. Warke, Friction stir welding studies on mild steel. Weld. J. N. Y. 82(1), 1 (2003)

    Google Scholar 

  46. T.F. de SantosA, E.A. Torres, A.J. Ramirez, Soldagem por atrito com pino não consumível de aços inoxidáveis duplex. Soldag. Insp. 21(1), 59–69 (2016)

    Article  Google Scholar 

  47. L.E. Murr, G. Liu, J.C. McClure, A TEM study of precipitation and related microstructures in friction-stir-welded 6061 aluminium. J. Mater. Sci. 33(5), 1243–1251 (1998)

    Article  CAS  Google Scholar 

  48. Y.S. Sato, H. Kokawa, M. Enomoto, S. Jogan, Microstructural evolution of 6063 aluminum during friction-stir welding. Metall. Mater. Trans. A. 30(9), 2429–2437 (1999)

    Article  Google Scholar 

  49. P.L. Threadgill, A.J. Leonard, H.R. Shercliff, P.J. Withers, Friction stir welding of aluminium alloys. Int. Mater. Rev. 54(2), 49–93 (2009)

    Article  CAS  Google Scholar 

  50. F.C. Liu, Z.Y. Ma, Influence of tool dimension and welding parameters on microstructure and mechanical properties of friction-stir-welded 6061–T651 aluminum alloy. Metall. Mater. Trans. A. 39(10), 2378–2388 (2008)

    Article  Google Scholar 

  51. A.L. Etter, T. Baudin, N. Fredj, R. Penelle, Recrystallization mechanisms in 5251 H14 and 5251 O aluminum friction stir welds. Mater. Sci. Eng. A. 445–446, 94–99 (2007)

    Article  Google Scholar 

  52. R.W. Fonda, J.F. Bingert, Microstructural evolution in the heat-affected zone of a friction stir weld. Metall. Mater. Trans. A. 35(5), 1487–1499 (2004)

    Article  Google Scholar 

  53. J.-Q. Su, T.W. Nelson, R. Mishra, M. Mahoney, Microstructural investigation of friction stir welded 7050–T651 aluminium. Acta Mater. 51(3), 713–729 (2003)

    Article  CAS  Google Scholar 

  54. J.-Q. Su, T.W. Nelson, C.J. Sterling, Microstructure evolution during FSW/FSP of high strength aluminum alloys. Mater. Sci. Eng. A. 405(1), 277–286 (2005)

    Article  Google Scholar 

  55. Z. Shen, Y. Chen, M. Haghshenas, A.P. Gerlich, Role of welding parameters on interfacial bonding in dissimilar steel/aluminum friction stir welds. Eng. Sci. Technol. Int. J. 18(2), 270–277 (2015)

    Google Scholar 

  56. T. Matsuda, H. Adachi, R. Yoshida, T. Sano, H. Hori, A. Hirose, Formation of interfacial reaction layer for stainless steel/aluminum alloy dissimilar joint in linear friction welding. Mater. Today Commun. 26, 101700 (2021)

    Article  CAS  Google Scholar 

  57. Torres, E.A., Ramirez, A.J.: Relationship Between FSW Parameters and Formation of Intermetallic Compounds in Dissimilar Aluminum-Steel Butt Joints. In: Proceedings of 9th International Conference on Trends in Welding Research American Society for Metals. , Chicago (2012)

  58. S. Fukumoto, H. Tsubakino, K. Okita, M. Aritoshi, T. Tomita, Amorphization by friction welding between 5052 aluminum alloy and 304 stainless steel. Scr. Mater. 42(8), 807–812 (2000)

    Article  CAS  Google Scholar 

  59. K. Tanaka, M. Kumagai, H. Yoshida, Dissimilar joining of aluminum alloy and steel sheets by friction stir spot welding. J. Jpn. Inst. Light Met. 56(6), 317–322 (2006)

    Article  CAS  Google Scholar 

  60. M. Movahedi, A.H. Kokabi, S.M.S. Reihani, W.J. Cheng, C.J. Wang, Effect of annealing treatment on joint strength of aluminum/steel friction stir lap weld. Mater. Des. 44, 487–492 (2013)

    Article  CAS  Google Scholar 

  61. C. van der Rest, P.J. Jacques, A. Simar, On the joining of steel and aluminium by means of a new friction melt bonding process. Scr. Mater. 77, 25–28 (2014)

    Article  Google Scholar 

  62. A. Tiwari, P. Singh, P. Pankaj, P. Biswas, S.D. Kore, FSW of low carbon steel using tungsten carbide (WC-10wt.%Co) based tool material. J. Mech. Sci. Technol. 33(10), 4931–4938 (2019)

    Article  Google Scholar 

  63. P.J. Konkol, J.A. Mathers, R. Johnson, J.R. Pickens, Friction stir welding of HSLA-65 steel for shipbuilding. J. Ship Prod. 19(03), 159–164 (2003)

    Article  Google Scholar 

  64. J. Defalco, S. Steel, Friction stir process now welds steel pipe. Weld. J. 88, 44–48 (2009)

    CAS  Google Scholar 

  65. G. Sorger, T. Sarikka, P. Vilaça, T.G. Santos, Effect of processing temperatures on the properties of a high-strength steel welded by FSW. Weld. World. 62(6), 1173–1185 (2018)

    Article  CAS  Google Scholar 

  66. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollett, Current issues in recrystallization: a review. Mater. Sci. Eng. A. 238(2), 219–274 (1997)

    Article  Google Scholar 

  67. F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, 2nd edn (Elsevier, Amsterdam, 2004)

    Google Scholar 

  68. N.L. do Vale, E.A. Torres, T.F. Santos, A. de, S.L. Urtiga Filho, J.F. dos Santos, Effect of the energy input on the microstructure and mechanical behavior of AA2024-T351 joint produced by friction stir welding. J. Braz. Soc. Mech. Sci. Eng. 40(9), 467 (2018)

    Article  CAS  Google Scholar 

  69. T. Chen, Process parameters study on FSW joint of dissimilar metals for aluminum–steel. J. Mater. Sci. 44(10), 2573–2580 (2009)

    Article  CAS  Google Scholar 

  70. W.-B. Lee, M. Schmuecker, U.A. Mercardo, G. Biallas, S.-B. Jung, Interfacial reaction in steel–aluminum joints made by friction stir welding. Scr. Mater. 55(4), 355–358 (2006)

    Article  CAS  Google Scholar 

  71. T. Watanabe, H. Takayama, A. Yanagisawa, Joining of aluminum alloy to steel by friction stir welding. J. Mater. Process. Technol. 178(1), 342–349 (2006)

    Article  CAS  Google Scholar 

  72. M. Girard, B. Huneau, C. Genevois, X. Sauvage, G. Racineux, Friction stir diffusion bonding of dissimilar metals. Sci. Technol. Weld. Join. 15(8), 661–665 (2010)

    Article  CAS  Google Scholar 

  73. T. Tanaka, T. Morishige, T. Hirata, Comprehensive analysis of joint strength for dissimilar friction stir welds of mild steel to aluminum alloys. Scr. Mater. 61(7), 756–759 (2009)

    Article  CAS  Google Scholar 

  74. Soundararajan, V., Kovacevic, R.: Friction stir welding of steel to aluminum alloy. In: Proceedings of the 6th International Symposium on Friction Stir Welding. pages 756–759. , Quebec (2009)

  75. R.S. Coelho, A. Kostka, J. dos Santos, A.R. Pyzalla, EBSD technique visualization of material flow in aluminum to steel friction-stir dissimilar welding. Adv. Eng. Mater. 10(12), 1127–1133 (2008)

    Article  CAS  Google Scholar 

  76. S. Lan, X. Liu, J. Ni, Microstructural evolution during friction stir welding of dissimilar aluminum alloy to advanced high-strength steel. Int. J. Adv. Manuf. Technol. 82(9), 2183–2193 (2016)

    Article  Google Scholar 

  77. S.Y. Anaman, H.-H. Cho, H. Das, J.-S. Lee, S.-T. Hong, Microstructure and mechanical/electrochemical properties of friction stir butt welded joint of dissimilar aluminum and steel alloys. Mater. Charact. 154, 67–79 (2019)

    Article  CAS  Google Scholar 

  78. P. Goel, N.Z. Khan, Z.A. Khan, A. Ahmari, N. Gangil, M.H. Abidi, A.N. Siddiquee, Investigation on material mixing during FSW of AA7475 to AISI304. Mater. Manuf. Process. 34(2), 192–200 (2019)

    Article  CAS  Google Scholar 

  79. Ø. Frigaard, Ø. Grong, O.T. Midling, A process model for friction stir welding of age hardening aluminum alloys. Metall. Mater. Trans. A. 32(5), 1189–1200 (2001)

    Article  Google Scholar 

  80. M.Z.H. Khandkar, J.A. Khan, A.P. Reynolds, Prediction of temperature distribution and thermal history during friction stir welding: input torque based model. Sci. Technol. Weld. Join. 8(3), 165–174 (2003)

    Article  Google Scholar 

  81. K.K. Ramachandran, N. Murugan, S.S. Kumar, Effect of tool axis offset and geometry of tool pin profile on the characteristics of friction stir welded dissimilar joints of aluminum alloy AA5052 and HSLA steel. Mater. Sci. Eng. A. 639, 219–233 (2015)

    Article  CAS  Google Scholar 

  82. J. Schneider, R. Beshears, A.C. Nunes, Interfacial sticking and slipping in the friction stir welding process. Mater. Sci. Eng. A. 435–436, 297–304 (2006)

    Article  Google Scholar 

  83. R. Nandan, T. DebRoy, H. Bhadeshia, Recent advances in friction-stir welding–process, weldment structure and properties. Prog. Mater. Sci. 53(6), 980–1023 (2008)

    Article  CAS  Google Scholar 

  84. B.F. Batistão, L.A. Bergmann, P. Gargarella, N.G. de Alcântara, J.F. dos Santos, B. Klusemann, Characterization of dissimilar friction stir welded lap joints of AA5083 and GL D36 steel. J. Mater. Res. Technol. 9(6), 15132–15142 (2020)

    Article  Google Scholar 

  85. H.B. Schmidt, J.H. Hattel, Thermal modelling of friction stir welding. Scr. Mater. 58(5), 332–337 (2008)

    Article  CAS  Google Scholar 

  86. Sousa, G.G., Montoya, M., Bouchonneau, N.S., Hermenegildo, T.F. da C., Santos, T.F. de A.: A proposal for thermal computational model for API 5L-X80 steel friction stir welds based on thermocouples measurements. In: MATHEMATICAL MODELLING OF WELD PHENOMENA. pages 651–664. Verlag der Technischen Universität Graz, Graz (2018)

  87. M. Matsushita, Y. Kitani, R. Ikeda, S. Endo, H. Fujii, Microstructure and toughness of friction stir weld of thick structural steel. ISIJ Int. 52(7), 1335–1341 (2012)

    Article  CAS  Google Scholar 

  88. Idagawa, H.S., Torres, E.A., Ramirez, A.J.: CFD Modeling of Dissimilar Aluminum-Steel Friction Stir Welds. In: Proceedings of the 9th International Conference (ASM International)Proceedings of the 9th International Conference (ASM International). , Chicago (2012)

  89. C.A. Hernández, V.H. Ferrer, J.E. Mancilla, L.C. Martínez, Three-dimensional numerical modeling of the friction stir welding of dissimilar steels. Int. J. Adv. Manuf. Technol. 93(5–8), 1567–1581 (2017)

    Article  Google Scholar 

  90. A.F. Hasan, C.J. Bennett, P.H. Shipway, A numerical comparison of the flow behaviour in friction stir welding (FSW) using unworn and worn tool geometries. Mater. Des. 87, 1037–1046 (2015)

    Article  Google Scholar 

  91. Fukumoto, M.: Butt welding between dissimilar metals by friction stirring. In: Proceedings of 5th International Symposium on Friction Stir Welding. , Metz (2004)

  92. A. Munitz, C. Cotler, M. Talianker, Aging impact on mechanical properties and microstructure of Al-6063. J. Mater. Sci. 35(10), 2529–2538 (2000)

    Article  CAS  Google Scholar 

  93. H. Zhang, Y. Wang, S.L. Shang, C. Ravi, C. Wolverton, L.Q. Chen, Z.K. Liu, Solvus boundaries of (meta) stable phases in the Al–Mg–Si system: First-principles phonon calculations and thermodynamic modeling. Calphad. 34(1), 20–25 (2010)

    Article  CAS  Google Scholar 

  94. R.W. Fonda, J.A. Wert, A.P. Reynolds, W. Tang, Friction stir welding of single crystal aluminium. Sci. Technol. Weld. Join. 12(4), 304–310 (2007)

    Article  CAS  Google Scholar 

  95. H. Uzun, C.D. Donne, A. Argagnotto, T. Ghidini, C. Gambaro, Friction stir welding of dissimilar Al 6013–T4 To X5CrNi18-10 stainless steel. Mater. Des. 26(1), 41–46 (2005)

    Article  CAS  Google Scholar 

  96. H. Fujii, L. Cui, N. Tsuji, M. Maeda, K. Nakata, K. Nogi, Friction stir welding of carbon steels. Mater. Sci. Eng. A. 429(1), 50–57 (2006)

    Article  Google Scholar 

  97. T.F.A. Santos, E.A. Torres, J.C. Lippold, A.J. Ramirez, Detailed microstructural characterization and restoration mechanisms of duplex and superduplex stainless steel friction-stir-welded joints. J. Mater. Eng. Perform. 25(12), 5173–5188 (2016)

    Article  CAS  Google Scholar 

  98. T.F.A. Santos, E.A.T. López, E.B. Fonseca, A.J. Ramirez, Friction stir welding of duplex and superduplex stainless steels and some aspects of microstructural characterization and mechanical performance. Mater. Res. 19(1), 117–131 (2016)

    Article  CAS  Google Scholar 

  99. S. Kobayashi, T. Yakou, Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment. Mater. Sci. Eng. A. 338(1), 44–53 (2002)

    Article  Google Scholar 

  100. A. Bouayad, C. Gerometta, A. Belkebir, A. Ambari, Kinetic interactions between solid iron and molten aluminium. Mater. Sci. Eng. A. 363(1), 53–61 (2003)

    Article  Google Scholar 

  101. M. Rathod, M. Kutsuna, Joining of aluminum alloy 5052 and low-carbon steel by laser roll welding. Weld. J. N. Y. 83(1), 16 (2004)

    Google Scholar 

  102. X. Liu, S. Lan, J. Ni, Analysis of process parameters effects on friction stir welding of dissimilar aluminum alloy to advanced high strength steel. Mater. Des. 59, 50–62 (2014)

    Article  CAS  Google Scholar 

  103. K. Kumar, S.V. Kailas, On the role of axial load and the effect of interface position on the tensile strength of a friction stir welded aluminium alloy. Mater. Des. 29(4), 791–797 (2008)

    Article  CAS  Google Scholar 

  104. W. Tang, X. Guo, J.C. McClure, L.E. Murr, A. Nunes, Heat input and temperature distribution in friction stir welding. J. Mater. Process. Manuf. Sci. 7, 163–172 (1998)

    Article  CAS  Google Scholar 

  105. M. Dehghani, A. Amadeh, S.A.A. Akbari Mousavi, Investigations on the effects of friction stir welding parameters on intermetallic and defect formation in joining aluminum alloy to mild steel. Mater. Des. 49, 433–441 (2013)

    Article  CAS  Google Scholar 

  106. T. Tanaka, M. Nezu, S. Uchida, T. Hirata, Mechanism of intermetallic compound formation during the dissimilar friction stir welding of aluminum and steel. J. Mater. Sci. 55(7), 3064–3072 (2020)

    Article  CAS  Google Scholar 

  107. H. Schmidt, J. Hattel, J. Wert, An analytical model for the heat generation in friction stir welding. Model. Simul. Mater. Sci. Eng. 12(1), 143–157 (2004)

    Article  Google Scholar 

  108. T. Ogura, Y. Saito, T. Nishida, H. Nishida, T. Yoshida, N. Omichi, M. Fujimoto, A. Hirose, Partitioning evaluation of mechanical properties and the interfacial microstructure in a friction stir welded aluminum alloy/stainless steel lap joint. Scr. Mater. 66(8), 531–534 (2012)

    Article  CAS  Google Scholar 

  109. T. Wang, H. Sidhar, R.S. Mishra, Y. Hovanski, P. Upadhyay, B. Carlson, Evaluation of intermetallic compound layer at aluminum/steel interface joined by friction stir scribe technology. Mater. Des. 174, 107795 (2019)

    Article  CAS  Google Scholar 

  110. H. Das, S. Basak, G. Das, T.K. Pal, Influence of energy induced from processing parameters on the mechanical properties of friction stir welded lap joint of aluminum to coated steel sheet. Int. J. Adv. Manuf. Technol. 64(9–12), 1653–1661 (2013)

    Article  Google Scholar 

  111. Y.F. Sun, H. Fujii, N. Takaki, Y. Okitsu, Microstructure and mechanical properties of dissimilar Al alloy/steel joints prepared by a flat spot friction stir welding technique. Mater. Des. 47, 350–357 (2013)

    Article  CAS  Google Scholar 

  112. Y.C. Chen, A. Gholinia, P.B. Prangnell, Interface structure and bonding in abrasion circle friction stir spot welding: a novel approach for rapid welding aluminium alloy to steel automotive sheet. Mater. Chem. Phys. 134(1), 459–463 (2012)

    Article  CAS  Google Scholar 

  113. K. Kimapong, T. Watanabe, Friction stir welding of aluminum alloy to steel. Weld. J. 83, 277–282 (2004)

    Google Scholar 

  114. O.D. Hincapié, J.A. Salazar, J.J. Restrepo, E.A. Torres, J. Graciano-Uribe, Control of formation of intermetallic compound in dissimilar joints aluminum-steel. Int. J. Eng. 32(1), 127–136 (2019)

    Google Scholar 

  115. O.D. Hincapié, J.A. Salazar, J.J. Restrepo, J.A. Graciano-Uribe, E.A. Torres, Weldability of aluminum-steel joints using continuous drive friction welding process, without the presence of intermetallic compounds. Eng. J. 24(1), 129–144 (2020)

    Article  Google Scholar 

  116. E.A. Torres, A.J. Ramirez, Inhibition of the formation of intermetallic compounds in aluminum-steel welded joints by friction stir welding. Rev. Metal. 51(4), e053 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Brazilian Nanotechnology National Laboratory (LNNano/CNPEM/MCTI) for their support with the use of microscopy facilities (JEOL JEM-2100 and FEI Quanta 650FEG) and FSW machine. The authors thank FAPESP and CNPq for scholarships. T.F.A. Santos would like to thank FACEPE (APQ-0471-3.03/19) and CNPq (304741/2020-5). EATL and TFAS also acknowledge the technical support, collaboration, and mentorship of Prof. Antonio Ramirez (Ohio State University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Felipe de Abreu Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The author Tiago Felipe de Abreu Santos’ name was misspelled.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres López, E.A., Graciano-Uribe, J.A., Marques, I.J. et al. Microstructural Features of Dissimilar Thin Sheets Aging Aluminum Alloy – Low Carbon Steel Joined by Friction Stir Welding. Metallogr. Microstruct. Anal. 11, 617–633 (2022). https://doi.org/10.1007/s13632-022-00879-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-022-00879-2

Keywords

Navigation