Skip to main content

Advertisement

Log in

Soybean is less impacted by water stress using Bradyrhizobium japonicum and thuricin-17 from Bacillus thuringiensis

  • Research Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Climate change is forecasted to induce more drought stress events. Water scarcity is already the most limiting abiotic stress for crop production. With higher food demand, there is a need for sustainable solutions to cope with the loss of productivity due to water stress. It is known that plant growth-promoting rhizobacteria (PGPR) can colonize plant roots and increase plant growth. However, there is actually no sustainable method to decrease the impact of water stress. Therefore, we hypothesized that an application of thuricin-17, a molecule produced by the PGPR Bacillus thuringiensis, could enhance soybean tolerance to water stress. We grew soybean plants for 1 month in growth chambers in order to evaluate their response to thuricin-17 root application under drought, in association with the inoculation of N2-fixing Bradyrhizobium japonicum. We measured traits reflecting root architecture: number of tips, root diameter, root length, number of nodules; water fluxes: water potential, stomatal conductance; carbon nutrition: leaf area, photosynthetic rate, biomass and carbon partitioning; nitrogen nutrition: nitrogen partitioning and hormone signalling: abscisic acid concentration during the vegetative growth period. Our results show that thuricin-17 application under water stress increased plant biomass by 17 %, thus masking drought impact. This effect is due to modifications of below-ground structures, with 37 % increase of root and 55 % increase of nodule biomass, and to slight increases of leaf area and photosynthetic rate. We also observed that application of thuricin-17 induced a 30 % increase of root abscisic acid, an increase of root length and of leaf water potential. Finally, thuricin-17 induced an activation of nodule formation by 40 %, a partial restoration of nodule-specific activity, nodule growth and consequently, an increase by 17 % of the total nitrogen amount in the plant. Overall, our findings reveal a new method to decrease the negative impact of water stress. Results also demonstrate that the plant restored an adequate water and N balance by changing its root structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acharya B, Assmann S (2009) Hormone interactions in stomatal function. Plant Mol Biol 69:451–462. doi:10.1007/s11103-008-9427-0

    Article  CAS  PubMed  Google Scholar 

  • Avice JC, Larmure A, Ourry A, Prudent M, Voisin AS and Salon C (2011) Plant N fluxes and modulation by nitrogen, heat and water stresses: a review based on comparison of legumes and non legume plants. In Abiotic Stress in Plants: Mechanisms and Adaptations Eds. A Shanker and B Venkateswarlu. INTECH. doi: 10.5772/23474

  • Bai Y, D'Aoust F, Smith DL, Driscoll BT (2002) Isolation of plant growth promoting Bacillus strains from soybean nodules. Can J Microbiol 48:230–238. doi:10.1139/w02-014

    Article  CAS  PubMed  Google Scholar 

  • Bresson J, Varoquaux F, Bontpart T, Touraine B, Vile D (2013) The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytol 200:558–569. doi:10.1111/nph.12383

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384. doi:10.1093/jxb/erh269

    Article  CAS  PubMed  Google Scholar 

  • Davies WJ, Zhang JH (1991) Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Physiol Plant Mol Biol 42:55–76. doi:10.1146/annurev.pp. 42.060191.000415

    Article  CAS  Google Scholar 

  • Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157:361–379. doi:10.1111/j.1744-7348.2010.00439.x

    Article  CAS  Google Scholar 

  • Easterling WE, Aggarwal PK, Batima P, Brander KM, Erda L, Howden SM, Kirilenko A, Morton J, Soussana JF, Schmidhuber J, Tubiello FN (2007) Food, fibre and forest products. Climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp 273–313

  • Flexas J, Ribas-Carbo M, Bota J, Galmes J, Henkle M, Martinez-Canellas S, Medrano H (2006) Decreased rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. New Phytol 172:73–82. doi:10.1111/j.1469-8137.2006.01794.x

    Article  CAS  PubMed  Google Scholar 

  • Friedman M, Brandon DL (2001) Nutritional and health benefits of soy proteins. J Agric Food Chem 49:1069–1086. doi:10.1021/jf0009246

    Article  CAS  PubMed  Google Scholar 

  • Friesen ML, Porter SS, Stark SC, von Wettberg EJ, Sachs JL, Martinez-Romero E (2011) Microbially mediated plant functional traits. Annu Rev Ecol Evol Syst 42:23–46. doi:10.1146/annurev-ecolsys-102710-145039

    Article  Google Scholar 

  • Goh CH, Veliz Vallejos DF, Nicotra AB, Mathesius U (2013) The impact of beneficial plant-associated microbes on plant phenotypic plasticity. J Chem Ecol 39:826–839. doi:10.1007/s10886-013-0326-8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gray EJ, Lee KD, Souleimanov AM, Di Falco MR, Zhou X, Ly A, Charles TC, Driscoll BT, Smith DL (2006) A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bacillus thuringiensis NEB17: isolation and classification. J Appl Microbiol 100:545–554. doi:10.1111/j.1365-2672.2006.02822.x

    Article  CAS  PubMed  Google Scholar 

  • Jones RJ, Mansfield TA (1970) Suppression of stomatal opening in leaves treated with abscisic acid. J Exp Bot 21:714–719. doi:10.1093/jxb/21.3.714

    Article  CAS  Google Scholar 

  • King CA, Purcell LC (2001) Soybean nodule size and relationship to nitrogen fixation response to water deficit. Crop Sci 41:1099–1107. doi:10.2135/cropsci2001.4141099x

    Article  Google Scholar 

  • Lee K, Gray E, Mabood F, Jung WJ, Charles T, Clark S, Ly A, Souleimanov A, Zhou X, Smith D (2009) The class IId bacteriocin thuricin-17 increases plant growth. Planta 229:747–755. doi:10.1007/s00425-008-0870-6

    Article  CAS  PubMed  Google Scholar 

  • Liu FL, Andersen MN, Jacobsen SE, Jensen CR (2005) Stomatal control and water use efficiency of soybean (Glycine max L. Merr.) during progressive soil drying. Environ Exp Bot 54:33–40. doi:10.1016/j.envexpbot.2004.05.002

    Article  CAS  Google Scholar 

  • Mahieu S, Germon F, Aveline A, Hauggaard-Nielsen H, Ambus P, Jensen ES (2009) The influence of water stress on biomass and N accumulation, N partitioning between above and below ground parts and on N rhizodeposition during reproductive growth of pea (Pisum sativum L.). Soil Biol Biochem 41:380–387. doi:10.1016/j.soilbio.2008.11.021

    Article  CAS  Google Scholar 

  • Manavalan LP, Guttikonda SK, Tran LSP, Nguyen HT (2009) Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol 50:1260–1276. doi:10.1093/pcp/pcp082

    Article  CAS  PubMed  Google Scholar 

  • Nelson JA, Morgan JA, LeCain DR, Mosier A, Milchunas DG, Parton BA (2004) Elevated CO2 increases soil moisture and enhances plant water relations in a long-term field study in semi-arid shortgrass steppe of Colorado. Plant Soil 259:169–179. doi:10.1023/B:PLSO.0000020957.83641.62

    Article  CAS  Google Scholar 

  • Poorter H, Nagel O (2000) The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrient and water: a quantitative review. Aust J Plant Physiol 27:595–607. doi:10.1071/PP99173_CO

    Article  CAS  Google Scholar 

  • Ross ARS, Ambrose SJ, Cutler AJ, Feurtado JA, Kermode AR, Nelson K, Zhou R, Abrams SR (2004) Determination of endogenous and supplied deuterated abscisic acid in plant tissues by high-performance liquid chromatography-electro-spray ionization tandem mass spectrometry with multiple reaction monitoring. Anal Biochem 329:324–333. doi:10.1016/j.ab.2004.02.026

    Article  CAS  PubMed  Google Scholar 

  • Schuize J, Adgo E, Merbach W (1999) Carbon costs associated with N2 fixation in Vicia faba L. and Pisum sativum L. over a 14-day period. Plant Biol 1:625–631. doi:10.1111/j.1438-8677.1999.tb00273.x

    Article  Google Scholar 

  • Serraj R, Sinclair TR, Purcell LC (1999) Symbiotic N2 fixation response to drought. J Exp Bot 50:143–155. doi:10.1093/jxb/50.331.143

    CAS  Google Scholar 

  • Spollen WG, LeNoble ME, Samuels TD, Bernstein N, Sharp RE (2000) Abscisic acid accumulation maintains Maize primary root elongation at low water potentials by restricting ethylene production. Plant Physiol 122:967–976. doi:10.1104/pp. 122.3.967

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Streeter JG (2003) Effects of drought on nitrogen fixation in soybean root nodules. Plant Cell Environ 26:1199–1204. doi:10.1046/j.1365-3040.2003.01041.x

    Article  CAS  Google Scholar 

  • Vadez V, Berger JD, Warkentin T, Asseng S, Ratnakumar P, Rao KPC, Gaur PM, Munier-Jolain N, Larmure A, Voisin AS, Sharma HC, Pande S, Sharma M, Krishnamurthy L, Zaman MA (2011) Adaptation of grain legumes to climate change: a review. Agron Sustain Dev 32:31–44. doi:10.1007/s13593-011-0020-6

    Article  Google Scholar 

  • Voisin AS, Munier-Jolain NG, Salon C (2010) The nodulation process is tightly adjusted to plant growth. An analysis using environmentally and genetically induced variation of nodule number and biomass in pea. Plant Soil 337:399–412. doi:10.1007/s11104-010-0536-6

    Article  CAS  Google Scholar 

  • Wallace JS (2000) Increasing agricultural water use efficiency to meet future food production. Agric Ecosyst Environ 82:105–119. doi:10.1016/S0167-8809(00)00220-6

    Article  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511. doi:10.1093/jexbot/52.suppl_1.487

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4. doi:10.1016/j.tplants.2008.10.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Sophie Baubil for taking care of the plants and for her assistance during harvests and to Anne-Lise Santoni for carbon and nitrogen analyses. We would like to thank Amy Galer for the technical support with hormone extraction and Leonid Kurepin, Allison Hayward and Heather Francis for their help with the mass spectrometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion Prudent.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prudent, M., Salon, C., Souleimanov, A. et al. Soybean is less impacted by water stress using Bradyrhizobium japonicum and thuricin-17 from Bacillus thuringiensis . Agron. Sustain. Dev. 35, 749–757 (2015). https://doi.org/10.1007/s13593-014-0256-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-014-0256-z

Keywords

Navigation